版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市九级八年级数学第二学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列各组数中,不是直角三角形的三条边的长的是()A.3,4,5 B.6,8,10 C.5,12,13 D.4,5,62.计算的结果是()A.﹣2 B.﹣1 C.1 D.23.某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y与时间x的关系的大致图象是A. B. C. D.4.等腰三角形的周长为20,设底边长为,腰长为,则关于的函数解析式为(为自变量)()A. B. C. D.5.如图,在△ABC中,BC=5,AC=8,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长等于()A.18 B.15 C.13 D.126.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()A. B.2 C. D.27.已知点P(m﹣3,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B.C. D.8.已知:如图,菱形ABCD对角线AC与BD相交于点O,E为BC的中点,AD=6cm,则OE的长为()A.6cm B.4cm C.3cm D.2cm9.用反证法证明:“中,若.则”时,第一步应假设()A. B. C. D.10.如图,菱形ABCD的对角线AC、BD相交于点O.若周长为20,BD=8,则AC的长是()A.3 B.4 C.5 D.6二、填空题(每小题3分,共24分)11.在植树节当天,某校一个班同学分成10个小组参加植树造林活动,10个小组植树的株数见下表:植树株数(株)
5
6
7
小组个数
3
4
3
则这10个小组植树株数的方差是_____.12._______.13.如图菱形ABCD的对角线AC,BD的长分别为12cm,16cm,则这个菱形的周长为____.14.点A(2,1)在反比例函数y=的图象上,当1<x<4时,y的取值范围是.15.小明在计算内角和时,不小心漏掉了一个内角,其和为1160,则漏掉的那个内角的度数是_____________.16.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为_____.17.如图,在中,对角线,相交于点,添加一个条件判定是菱形,所添条件为__________(写出一个即可).18.当二次根式的值最小时,=______.三、解答题(共66分)19.(10分)解不等式:20.(6分)某区举行“中华诵经典诵读”大赛,小学、中学组根据初赛成绩,各选出5名选手组成小学代表队和中学代表队参加市级决赛,两个代表队各选出的5名选手的决赛成绩分别绘制成下列两个统计图根据以上信息,整理分析数据如下:平均数(分中位数(分众数(分小学组85100中学组85(1)写出表格中,,的值:,,.(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较稳定.21.(6分)八年级(3)班同学为了解2020年某小区家庭1月份天然气使用情况,随机调查了该小区部分家庭,并将调查数据进行如下整理:月均用气量x()频数(户)频率0<x≤1040.0810<x≤20a0.1220<x≤30160.3230<x≤4012b40<x≤50100.2050<x≤6020.04(1)求出a,b的值,并把频数分布直方图补充完整;(2)求月均用气量不超过30的家庭数占被调查家庭总数的百分比;(3)若该小区有600户家庭,根据调查数据估计,该小区月均用气量超过40的家庭大约有多少户?22.(8分)有红、白、蓝三种颜色的小球各一个,它们除颜色外没有其他任何区别.现将3个小球放入编号为①②③的三个盘子里,规定每个盒子里放一个,且只能放一个小球(1)请用树状图或其他适当的形式列举出3个小球放入盒子的所有可能情况;(2)求红球恰好被放入②号盒子的概率.23.(8分)已知:如图,平面直角坐标系xOy中,B(0,1),OB=OC=OA,A、C分别在x轴的正负半轴上.过点C的直线绕点C旋转,交y轴于点D,交线段AB于点E.(1)求∠OAB的度数及直线AB的解析式;(2)若△OCD与△BDE的面积相等,求点D的坐标.24.(8分)(﹣)2(+)+|2﹣|﹣25.(10分)如图,已知平行四边形ABCD,(1)=;(用的式子表示)(2)=;(用的式子表示)(3)若AC⊥BD,||=4,||=6,则|+|=.26.(10分)耒阳市某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题:(1)在这次问卷调查中,喜欢“科普书籍”出现的频率为;(2)补全条形图;(3)求在扇形统计图中,喜欢“科普书籍”的所占的圆心角度数;(4)如果全校共有学生1500名,请估计该校最喜欢“科普”书籍的学生约有多少人?
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】
根据勾股定理即可判断.【题目详解】A.∵32+42=52,故为直角三角形;B.62+82=102,故为直角三角形;C.52+122=132,故为直角三角形;D.42+52≠62,故不是直角三角形;故选D.【题目点拨】此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的性质.2、C【解题分析】
直接利用二次根式的性质化简得出答案.【题目详解】.解:.故选:C.【题目点拨】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.3、B【解题分析】
图象应分三个阶段,第一阶段:匀速跑步到公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:在公园停留了一段时间,这一阶段离家的距离不随时间的变化而改变.故D错误;第三阶段:沿原路匀速步行回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度小于于第一阶段的速度,则C错误.故选B考点:函数的图象【题目点拨】本题考查了函数的图象,理解每阶段中,离家的距离与时间的关系,根据图象的斜率判断运动的速度是解决本题的关键.4、C【解题分析】
根据等腰三角形的腰长=(周长-底边长)÷2,把相关数值代入即可.【题目详解】等腰三角形的腰长y=(20-x)÷2=-+1.故选C.【题目点拨】考查列一次函数关系式;得到三角形底腰长的等量关系是解决本题的关键.5、C【解题分析】
先根据线段垂直平分线的性质得出,故可得出的周长,由此即可得出结论.【题目详解】解:在中,,,是线段的垂直平分线,,的周长.故选:C.【题目点拨】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.6、C【解题分析】
在Rt△ACD中求出AD,在Rt△CDB中求出BD,继而可得出AB.【题目详解】在Rt△ACD中,∠A=45°,CD=1,则AD=CD=1,在Rt△CDB中,∠B=30°,CD=1,则BD=,故AB=AD+BD=+1.故选C.【题目点拨】本题考查了等腰直角三角形及含30°角的直角三角形的性质,要求我们熟练掌握这两种特殊直角三角形的性质.7、D【解题分析】
先根据题意列出不等式组,求出其中各不等式的解集,再求出这些解集的公共部分即可.【题目详解】解:∵点P(m﹣3,m﹣1)在第二象限,∴,解得:1<m<3,故选:D.【题目点拨】本题考查不等式组的解法,在数轴上表示不等式组的解集等知识,解题的关键是熟练掌握不等式组的解法,属于中考常考题型.8、C【解题分析】
根据菱形的性质,各边长都相等,对角线垂直平分,可得点O是AC的中点,证明EO为三角形ABC的中位线,计算可得.【题目详解】解:∵四边形是菱形,∴,,∵为的中点,∴是的中位线,∴,故选:C.【题目点拨】本题考查了菱形的性质,三角形中位线的性质,熟练掌握几何图形的性质是解题关键.9、B【解题分析】
熟记反证法的步骤,直接选择即可【题目详解】解:用反证法证明命题“在△ABC中,AB≠AC,求证:∠B≠∠C”的过程中,第一步应是假设∠B=∠C.故选:B【题目点拨】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.
反证法的步骤是:
(1)假设结论不成立;
(2)从假设出发推出矛盾;
(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.10、D【解题分析】
根据菱形性质得出AB=BC=CD=AD,AC⊥BD,BO=OB,AO=OC,求出OB,根据勾股定理求出OA,即可求出AC.【题目详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,BO=OB,AO=OC,∵菱形的周长是20,∴DC=×20=5,∵BD=8,∴OD=4,在Rt△DOC中,OD==3,∴AC=2OC=1.故选:D.【题目点拨】本题考查了菱形性质和勾股定理,注意:菱形的对角线互相垂直平分,菱形的四条边相等.二、填空题(每小题3分,共24分)11、0.1.【解题分析】
求出平均数,再利用方差计算公式求出即可:根据表格得,平均数=(5×3+1×4+7×3)÷10=1.∴方差=.【题目详解】请在此输入详解!12、1【解题分析】
用配方法解题即可.【题目详解】故答案为:1.【题目点拨】本题主要考查配方法,掌握规律是解题关键.13、40cm【解题分析】
根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【题目详解】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×12=6cm,OB=BD=×16=8cm,根据勾股定理得,,所以,这个菱形的周长=4×10=40cm.故答案为:40cm.【题目点拨】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.14、<y<1【解题分析】试题分析:将点A(1,1)代入反比例函数y=的解析式,求出k=1,从而得到反比例函数解析式,再根据反比例函数的性质,由反比例图像在第一象限内y随x的增大而减小,可根据当x=1时,y=1,当x=4时,y=,求出当1<x<4时,y的取值范围<y<1.考点:1、待定系数法求反比例函数解析式;1、反比例函数的性质15、100°【解题分析】
根据n边形的内角和是(n-2)•180°,少计算了一个内角,结果得1160,可以解方程(n-2)•180°≥1160,由于每一个内角应大于0°而小于180度,则多边形的边数n一定是最小的整数值,从而求出多边形的边数,内角和,进而求出少计算的内角.【题目详解】解:设多边形的边数是n.
依题意有(n-2)•180°≥1160°,解得:则多边形的边数n=9;
九边形的内角和是(9-2)•180=1260度;
则未计算的内角的大小为1260-1160°=100°.
故答案为:100°【题目点拨】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键.16、14【解题分析】
根据图象点P到达C时,△PAB的面积为6,由BC=4,∠B=120°可求得AB=6,H横坐标表示点P从B开始运动到A的总路程,则问题可解.【题目详解】由图象可知,当x=4时,点P到达C点,此时△PAB的面积为6∵∠B=120°,BC=4∴解得AB=6H点表示点P到达A时运动的路程为4+6+4=14故答案为14【题目点拨】本题为动点问题的函数图象探究题,考查了一次函数图象性质,解答时注意研究动点到达临界点前后函数图象的变化.17、AD=AB【解题分析】
根据菱形的判定定理即可求解.【题目详解】∵四边形ABCD为平行四边形,所以可以添加AD=AB,即可判定是菱形,故填:AD=AB.【题目点拨】此题主要考查菱形的判定,解题的关键是熟知菱形的判定定理.18、1【解题分析】
直接利用二次根式的定义分析得出答案.【题目详解】∵二次根式的值最小,∴,解得:,故答案为:1.【题目点拨】本题主要考查了二次根式的定义,正确把握定义是解题关键.三、解答题(共66分)19、.【解题分析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【题目详解】,,,.【题目点拨】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.20、(1)1,80,1;(2)从平均数和中位数进行分析,中学组代表队的决赛成绩较好;(3)中学组代表队选手成绩较稳定.【解题分析】
(1)根据平均数、中位数、众数的计算方法,通过计算得出答案,(2)从平均数和中位数两个方面进行比较、分析得出结论,(3)利用方差的计算公式,分别计算两个组的方差,通过比较得出答案.【题目详解】(1)中学组的平均数分;小学组的成绩:70、75、80、100、100因此中位数为:80;中学组出现次数最多的分数是1分,所有众数为1分;故答案为:1,80,1.(2)从平均数上看,两个队都是1分,但从中位数上看中学组1分比小学组的80分要好,因此从平均数和中位数进行分析,中学组的决赛成绩较好;答:从平均数和中位数进行分析,中学组代表队的决赛成绩较好.(3),中学组的比较稳定.答:中学组代表队选手成绩较稳定.【题目点拨】考查从统计图、统计表中获取数据的能力,以及平均数、中位数、众数、方差的意义和计算方法、明确各个统计量反映一组数据哪些特征,即要对一组数据进行分析,需要利用哪个统计量.21、(1)6,,图见解析;(2);(3)1.【解题分析】
(1)先求出随机调查的家庭总户数,再根据“频数频率总数”可求出a的值,根据“频率频数总数”可求出b的值,然后补全频数分布直方图即可;(2)根据总户数和频数分布表中“月均用气量不超过的家庭数”即可得;(3)先求出“小区月均用气量超过的家庭”的占比,再乘以600即可得.【题目详解】(1)随机调查的家庭总户数为(户)则补全频率分布直方图如下所示:(2)月均用气量不超过的家庭数为(户)则答:月均用气量不超过30的家庭数占被调查家庭总数的百分比为;(3)小区月均用气量超过的家庭占比为则(户)答:该小区月均用气量超过40的家庭大约有1户.【题目点拨】本题考查了频数分布表和频数分布直方图,掌握理解频数分布表和频数分布直方图是解题关键.22、(1)详见解析;(2)【解题分析】
列举出符合题意的各种情况的个数,再根据概率公式解答即可.【题目详解】(1)(2)P(红球恰好被放入②号盒子)=【题目点拨】本题考查列表法与树状图法,列举出符合题意的各种情况的个数是解题关键.23、(1)45°,y=﹣x+1;(2)(0,).【解题分析】
(1)根据A、B的坐标和三角形的内角和定理求出∠OAB的度数即可;设直线AB的解析式为y=kx+b,把A、B的坐标代入得出方程组,求出方程组的解即可;(2)推出三角形AOB和三角形ACE的面积相等,根据面积公式求出E的纵坐标,代入直线AB的解析式,求出E的横坐标,设直线CE的解析式是:y=mx+n,利用待定系数法求出直线EC的解析式,进而即可求得点D的坐标.【题目详解】解:(1)∵OB=OC=OA,∠AOB=90°,∴∠OAB=45°;∵B(0,1),∴A(1,0),设直线AB的解析式为y=kx+b.∴解得,∴直线AB的解析式为y=﹣x+1;(2)∵S△COD=S△BDE,∴S△COD+S四边形AODE=S△BDE+S四边形AODE,即S△ACE=S△AOB,∵点E在线段AB上,∴点E在第一象限,且yE>0,∴∴把y代入直线AB的解析式得:∴设直线CE的解析式是:y=mx+n,∵代入得:解得:∴直线CE的解析式为令x=0,则∴D的坐标为【题目点拨】本题考查了等腰三角形的性质,用待定系数法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论