广东省江门市新会区2024届数学八年级第二学期期末综合测试试题含解析_第1页
广东省江门市新会区2024届数学八年级第二学期期末综合测试试题含解析_第2页
广东省江门市新会区2024届数学八年级第二学期期末综合测试试题含解析_第3页
广东省江门市新会区2024届数学八年级第二学期期末综合测试试题含解析_第4页
广东省江门市新会区2024届数学八年级第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省江门市新会区2024届数学八年级第二学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若实数3是不等式2x–a–2<0的一个解,则a可取的最小正整数为(

)A.2 B.3 C.4 D.52.如图,在菱形ABCD中,点E,点F为对角线BD的三等分点,过点E,点F与BD垂直的直线分别交AB,BC,AD,DC于点M,N,P,Q,MF与PE交于点R,NF与EQ交于点S,已知四边形RESF的面积为5cm2,则菱形ABCD的面积是()A.35cm2 B.40cm2 C.45cm2 D.50cm23.如图,△ABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD的值是()A.0.72 B.2.0 C.1.125 D.不能确定4.一次函数的图像经过点,且的值随值的增大而增大,则点的坐标可以为()A. B. C. D.5.如图,BE、CF分别是△ABC边AC、AB上的高,M为BC的中点,EF=5,BC=8,则△EFM的周长是()A.21 B.18 C.15 D.136.如图,已知△ABC的周长为20cm,现将△ABC沿AB方向平移2cm至△A′B′C′的位置,连结CC′.则四边形AB′C′C的周长是()A.18cm B.20cm C.22cm D.24cm7.如果把2xyx-y分式中的x、y都扩大到10倍,那么分式的值(A.扩大10倍 B.不变 C.扩大20倍 D.是原来的18.如图,把经过一定的变换得到,如果上点的坐标为,那么这个点在中的对应点的坐标为()A. B. C. D.9.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm10.如图,等边与正方形重叠,其中,两点分别在,上,且,若,,则的面积为()A.1 B.C.2 D.二、填空题(每小题3分,共24分)11.如图,小芳作出了边长为1的第1个正△A1B1C1.然后分别取△A1B1C1的三边中点A2、B2、C2,作出了第2个正△A2B2C2;用同样的方法,作出了第3个正△A3B3C3,……,由此可得,第个正△AnBnCn的边长是___________.12.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____.13.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为4,则第n个矩形的面积为_____.14.化简3﹣2=_____.15.一个不透明的布袋中放有大小、质地都相同四个红球和五个白球,小敏第一次从布袋中摸出一个红球后放回布袋中,接看第二次从布袋中摸球,那么小敏第二次还是摸出红球的可能性为_____.16.已知反比例函数的图象在第二、四象限,则取值范围是__________17.在Rt△ABC中,∠C=90°,若a=6,b=8,则c=________.18.若O是四边形ABCD的对角线AC和BD的交点,且OB=OD,AC=14cm,则当OA=_____cm时,四边形ABCD是平行四边形.三、解答题(共66分)19.(10分)求证:三角形的一条中位线与第三边上的中线互相平分.要求:(1)根据给出的和它的一条中位线,在给出的图形上,请用尺规作出边上的中线,交于点.不写作法,保留痕迹;(2)据此写出已知,求证和证明过程.20.(6分)某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=40m,BC=30m.线段CD是一条水渠,且D点在边AB上,已知水渠的造价为800元,问:当水渠的造价最低时,CD长为多少米?最低造价是多少元?21.(6分)甲、乙两运动员的五次射击成绩如下表(不完全):(单位:环)第1次第2次第3次第4次第5次甲乙ab9若甲、乙射击平均成绩一样,求的值;在条件下,若是两个连续整数,试问谁发挥的更稳定?22.(8分)如图,在平面直角坐标系中,一次函数的图象与正比例函数的图象都经过点.(1)求一次函数和正比例函数的解析式;(2)若点是线段上一点,且在第一象限内,连接,设的面积为,求面积关于的函数解析式.23.(8分)解方程:(1)x2=14(2)x(x﹣1)=(x﹣2)224.(8分)已知点E、F分别是四边形ABCD边AB、AD上的点,且DE与CF相交于点G.(1)如图①,若AB∥CD,AB=CD,∠A=90°,且AD•DF=AE•DC,求证:DE⊥CF:(2)如图②,若AB∥CD,AB=CD,且∠A=∠EGC时,求证:DE•CD=CF•DA:(3)如图③,若BA=BC=3,DA=DC=4,设DE⊥CF,当∠BAD=90°时,试判断是否为定值,并证明.25.(10分)社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?26.(10分)如图,在3×3的方格内,填写了一些代数式和数.(1)在图(1)中各行、各列及对角线上三个数之和都相等,请你求出x,y的值;(2)把满足(1)的其它6个数填入图(2)中的方格内.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】解:根据题意,x=3是不等式的一个解,∴将x=3代入不等式,得:6﹣a﹣2<0,解得:a>4,则a可取的最小正整数为5,故选D.点睛:本题主要考查不等式的整数解,熟练掌握不等式解得定义及解不等式的能力是解题的关键.2、C【解题分析】

依据图形可发现菱形ABCD与菱形RESF相似,连接RS交EF与点O,可求得它们的相似比=OE:OB,然后依据面积比等于相似比的平方求解即可.【题目详解】连接RS,RS交EF与点O.

由图形的对称性可知RESF为菱形,且菱形ABCD与菱形RESF相似,

∴OE=OF.

∴OB=3OE,

∴,

∴菱形ABCD的面积=5×9=45cm1.

故选:C.【题目点拨】本题主要考查的是菱形的性质,掌握求得两个菱形的相似比是解题的关键.3、A【解题分析】

先根据勾股定理的逆定理证明△ABC是直角三角形,根据计算直角三角形的面积的两种计算方法求出斜边上的高CD.【题目详解】∵AB=1.5,BC=0.9,AC=1.2,∴AB2=1.52=2.25,BC2+AC2=0.92+1.22=2.25,∴AB2=BC2+AC2,∴∠ACB=90°,∵CD是AB边上的高,∴S△ABC=AB·CD=AC·BC,1.5CD=1.2×0.9,CD=0.72,故选A.【题目点拨】该题主要考查了勾股定理的逆定理、三角形的面积公式及其应用问题;解题的方法是运用勾股定理首先证明△ABC为直角三角形;解题的关键是灵活运用三角形的面积公式来解答.4、A【解题分析】

y的值随x值的增大而増大,可知函数y=kx-1图象经过第一、三、四象限,结合选项判断点(1,-3)符合题意.【题目详解】解:y的值随x值的增大而増大,∴k>0,∴函数图象经过第一、三、四象限,点(1,-3)、点(5,3)和点(5,-1)符合条件,当经过(5,-1)时,k=0,当经过(1,-3)时,k=-2,当经过(5,3)时,k=,故选:A.【题目点拨】本题考查一次函数图象及性质;熟练掌握一次函数图象性质,点与函数图象的关系是解题的关键.5、D【解题分析】

根据直角三角形斜边上的中线等于斜边的一半,先求出EM=FM=BC,再求△EFM的周长.【题目详解】解:∵BE、CF分别是△ABC的高,M为BC的中点,BC=8,

∴在Rt△BCE中,EM=BC=4,

在Rt△BCF中,FM=BC=4,

又∵EF=5,

∴△EFM的周长=EM+FM+EF=4+4+5=1.故选:D.【题目点拨】本题主要利用直角三角形斜边上的中线等于斜边的一半的性质.6、D【解题分析】

根据平移的性质求出平移前后的对应线段和对应点所连的线段的长度,即可求出四边形的周长.【题目详解】解:由题意,平移前后A、B、C的对应点分别为A′、B′、C′,所以BC=B′C′,BB′=CC′,∴四边形AB′C′C的周长=CA+AB+BB′+B′C′+C′C=△ABC的周长+2BB′=20+4=24(cm),故选D.【题目点拨】本题考查的是平移的性质,主要运用的知识点是:经过平移,对应点所连的线段平行且相等,对应线段平行且相等.7、A【解题分析】

利用分式的基本性质即可求出答案.【题目详解】用10x和10y代替式子中的x和y得:原式=2×10x×10y10x-10y=10×∴分式的值扩大为原来的10倍.选A.【题目点拨】本题考查了分式的基本性质。8、B【解题分析】

先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.【题目详解】解:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,

∴点P(x,y)的对应点P′的坐标为(-x,y+2).

故选:B.【题目点拨】本题考查了坐标与图形变化,解决本题的关键是根据已知对应点找到各对应点之间的变化规律.9、D【解题分析】

根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【题目详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【题目点拨】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.10、C【解题分析】

过F作FQ⊥BC于Q,根据等边三角形的性质和判定和正方形的性质求出BE=2,∠BED=60°,∠DEF=90°,EF=2,求出∠FEQ,求出CE和FQ,即可求出答案.【题目详解】过F作FQ⊥BC于Q,则∠FQE=90°.∵△ABC是等边三角形,AB=6,∴BC=AB=6,∠B=60°.∵BD=BE,DE=2,∴△BED是等边三角形,且边长为2,∴BE=DE=2,∠BED=60°,∴CE=BC﹣BE=1.∵四边形DEFG是正方形,DE=2,∴EF=DE=2,∠DEF=90°,∴∠FEC=180°﹣60°﹣90°=30°,∴QFEF=1,∴△EFC的面积为CE•FQ1×1=2.故选C.【题目点拨】本题考查了等边三角形的性质和判定、正方形的性质等知识点,能求出CE和FQ的长度是解答此题的关键.二、填空题(每小题3分,共24分)11、【解题分析】

根据三角形的中位线平行于第三边并且等于第三边的一半,分别求出各三角形的边长,再根据等边三角形的边长的变换规律求解即可.【题目详解】解:由题意得,△A2B2C2的边长为△A3B3C3的边长为△A4B4C4的边长为…,∴△AnBnCn的边长为故答案为:【题目点拨】本题考查了三角形中位线定理,三角形的中位线平行于第三边并且等于第三边的一半,根据规律求出第n个等边三角形的边长是解题的关键.12、【解题分析】试题解析:设BE与AC交于点P,连接BD,∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度;∵正方形ABCD的边长为1,∴AB=1.又∵△ABE是等边三角形,∴BE=AB=1.故所求最小值为1.考点:轴对称﹣最短路线问题;等边三角形的性质;正方形的性质.13、【解题分析】

第二个矩形的面积为第一个矩形面积的,第三个矩形的面积为第一个矩形面积的,依此类推,第n个矩形的面积为第一个矩形面积的.【题目详解】解:第二个矩形的面积为第一个矩形面积的;第三个矩形的面积是第一个矩形面积的;…故第n个矩形的面积为第一个矩形面积的.又∵第一个矩形的面积为4,∴第n个矩形的面积为.故答案为:.【题目点拨】本题考查了矩形、菱形的性质.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.14、【解题分析】

直接合并同类二次根式即可.【题目详解】原式=(3﹣2)=.故答案为.【题目点拨】本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.15、.【解题分析】

小敏第一次从布袋中摸出一个红球的概率为,第二次从布袋中摸出一个红球的概率为,据此可得两次摸出的球都是红球的概率.【题目详解】∵小敏第一次从布袋中摸出一个红球的概率为,第二次从布袋中摸出一个红球的概率为,∴两次摸出的球都是红球的概率为:×=.故答案为:.【题目点拨】本题主要考查了概率的计算,用到的知识点为:概率=所求情况数与总情况数之比.16、m>5【解题分析】

已知反比例函数的图象在第二、四象限,所以,解得m>5,故答案为:m>5.【题目点拨】本题考查反比例函数的性质,掌握反比例函数的性质是解本题的关键17、10【解题分析】

根据勾股定理c为三角形边长,故c=10.18、1【解题分析】

根据OB=OD,当OA=OC时,四边形ABCD是平行四边形,即可得出答案.【题目详解】由题意得:当OA=1时,OC=14﹣1=1=OA,∵OB=OD,∴四边形ABCD是平行四边形,故答案为:1.【题目点拨】本题考查平行四边形的判定,解题关键是熟练掌握平行四边形的判定定理:对角线互相平分的四边形是平行四边形,难度一般.三、解答题(共66分)19、(1)作线段的中段线,的中点为,连结即可,见解析;(2)见解析.【解题分析】

(1)作BC的垂直平分线得到BC的中点F,从而得到BC边上的中线AF;(2)写出已知、求证,连接DF、EF,如图,先证明EF为AB边的中位线,利用三角形中位线性质得到EF∥AD,EF=AD,则可判断四边形ADFE为平行四边形,从而得到DE与AF互相平分.【题目详解】解:(1)作线段的中段线,的中点为,连结即可。(2)已知:分别为三边的中点,与交于点。求证:与互相平分。证明:连结,分别为的中点,有,又为中点,所以,,四边形为平行四边形,所以,与互相平分.【题目点拨】本题考查了作图——基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形中位线定理.20、CD长为24米,水渠的造价最低,其最低造价为19200元.【解题分析】

根据点到直线的距离垂线段最短求出当CD为斜边上的高时CD最短,从而水渠造价最低.根据勾股定理求出AB的长度,根据等面积法求出CD的长度,再根据CD的长度求出水渠造价.【题目详解】当CD为斜边上的高时,CD最短,从而水渠造价最低,∵∠ACB=90°,AC=40米,BC=30米,∴AB=米∵CD⋅AB=AC⋅BC,即CD⋅50=40×30,∴CD=24米,∴24×800=19200元所以,CD长为24米,水渠的造价最低,其最低造价为19200元.【题目点拨】本题考查利用勾股定理解直角三角形,点到直线的距离.能根据点到直线的距离垂线段最短确定点D的位置是解决此题的关键.21、(1);(2)乙更稳定【解题分析】

(1)求出甲的平均数为9,再根据甲、乙射击平均成绩一样,即乙的平均数也是9,即可得出的值;(2)根据题意令,分别计算甲、乙的方差,方差越小.成绩越稳定.【题目详解】解:(1)(环)(环)(2)且为连续的整数令,,乙更稳定【题目点拨】本题考查的知识点是求数据的算术平均数以及方差,掌握算术平均数以及方差的计算公式是解此题的关键.22、(1)y=﹣x+4,;(2)S=2x(0<x≤3).【解题分析】

(1)把B(3,1)分别代入y=﹣x+b和y=kx即可得到结论;(2)根据三角形的面积公式即可得到结论.【题目详解】(1)把B(3,1)分别代入y=﹣x+b和y=kx得1=﹣3+b,1=3k,解得:b=4,k,∴y=﹣x+4,yx;(2)∵点P(x,y)是线段AB上一点,∴S•xP2x(0<x≤3).【题目点拨】本题考查了两直线相交或平行,三角形面积的求法,待定系数法确定函数关系式,正确的理解题意是解题的关键.23、(1)x=±7;(2)x1=2,x2=1.【解题分析】

(1)方程整理后,利用平方根定义开方即可求出解;(2)方程整理后,利用因式分解法求出解即可.【题目详解】(1)方程整理得:x2=19,开方得:x=±7;(2)方程整理得:x2﹣6x+8=0,分解因式得:(x﹣2)(x﹣1)=0,解得:x1=2,x2=1.【题目点拨】此题考查了解一元二次方程﹣因式分解法,以及直接开平方法,熟练掌握各种解法是解本题的关键.24、(1)证明见解析(2)证明见解析(3)答案见解析【解题分析】

(1)根据已知条件得到四边形ABCD是矩形,由矩形的性质得到∠A=∠FDC=90°,根据相似三角形的性质得到∠CFD=∠AED,根据余角的性质即可得到结论;

(2)根据已知条件得到△DFG∽△DEA,推出,根据△CGD∽△CDF,得到,等量代换即可得到结论;

(3)过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,△BAD≌△BCD,推出∠BCD=∠A=90°,证△BCM∽△DCN,求出,在Rt△CMB中,由勾股定理得出BM2+CM2=BC2,解方程得到CN,证出△AED∽△NFC,即可得出答案.【题目详解】(1)证明:∵AB∥CD,AB=CD,∠A=90°,∴四边形ABCD是矩形,∴∠A=∠FDC=90°,∵AD•DF=AE•DC,∴∴△AED∽△DFC,∴∠CFD=∠AED,∵∠ADE+∠AED=90°,∴∠ADE+∠CFD=90°,∴∠DGF=90°,∴DE⊥CF;(2)证明:∵∠A=∠EGC,∠ADE=∠GDF,∴△DFG∽△DEA,∴∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∠AED=∠EDC,∴∠B=∠ADC,∵△DFG∽△DEA,∴∠AED=∠DFG,∴DFC=∠GDC,∵∠DCG=∠FCD,∴△CGD∽△CDF,∴∴,∴DE•CD=CF•DA;(3)解:为定值,理由:过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,∵∠BAD=90°,即AB⊥AD,∴∠A=∠M=∠CNA=90°,∴四边形AMCN是矩形,∴AM=CN,AN=CM,∵在△BAD和△BCD中,∴△BAD≌△BCD(SSS),∴∠BCD=∠A=9

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论