建模思想在小学数学教学中的运用_第1页
建模思想在小学数学教学中的运用_第2页
建模思想在小学数学教学中的运用_第3页
建模思想在小学数学教学中的运用_第4页
建模思想在小学数学教学中的运用_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

./建模思想在小学数学教学中的运用从教十多年以来,深刻领悟到"授之以渔"的重要性。教师在教学过程中要采取有效措施,加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。现结合自己的教学实践谈谈对小学生形成数学建模思想的思考。一、积累表象,感知数学模型感性材料是学生建立数学模型的基础,因此教师首先要给学生提供丰富的感性材料,多侧面、多维度、全方位感知某类事物的特征或数量间的相依关系,为数学模型的准确构建提供平台。如"表内乘法"模型构建的过程就是一个不断感知、积累的过程。首先学习"2-6的乘法口诀"的算法,初步了解乘法的意义,学会能用找规律的方法算出几个相同加数的和,感知乘法口诀的来源及编制的方法;接着采取半扶半放的方式学习"7、8的乘法口诀",进一步引导学生感知归纳法、演绎法更广的适用范围;最后学习"9的乘法口诀",运用以前已有的思想和方法灵活解决相关的计算问题。在此过程中,学生经历了观察、操作、实践等活动,充分体验了"表内乘法"的内涵,为形成"表内乘法"的模型奠定了坚实的基础。二、参与研究,构建数学模型动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。学习过程中学生有时独立思考,有时小组合作学习,有时是独立探索和合作学习相结合,学生在新知探索中充分体验了数学模型的形成过程。三、联系实际,应用数学模型从具体的问题经历抽象提炼的过程,初步构建起相应的数学模型,还要组织学生将数学模型还原为具体的数学直观或可感的数学现实,使已经构建的数学模型不断得以扩充和提升。如"鸡兔同笼"的问题模型,是通过研究"鸡"、"兔"建立起来的,但建立模型的过程中不可能将所有的同类事物一一列举。因此,教师要带领学生继续扩展考察的范围,分析当情境、数据变化时模型的稳定性。可以出示如下问题让学生分析:"两车共有126人,如果从一辆车每8人中选一名代表,从乙车每6人中选一名代表,正好选出17名代表。甲、乙两车各有多少人?"这样,使模型的外延不断得以丰富和拓展。建模思想在小学数学教学中的运用桐木小学杨同英用数学建模的思想来指导着小学数学教学,不同的年级、内容、学习对象应该体现出一定的差异,但也存在着很大的关联性。就教学实施的一般程序来看,可以归结到三个字:"磨""模""魔"。一、"磨"。所谓"磨",即"琢磨"。也就是教师首先要反复琢磨每一具体的教学内容中隐藏着怎样的"模"?需要帮助学生建立怎样的"模"?如何来建"模"?在多大的程度上来建"模"?所建的"模"和建模的过程对于儿童的数学学习具有怎样的影响?……在基于建模思想的数学教学中,这些问题都是一些本原性的问题。一个老师如果从来不曾在这些方面作过思考的话,可以肯定,他的数学课堂上数学知识概念、命题、问题和方法等很难见到"数学模型"的影子,他的学生也可能从未感受过"数学模型"的力量。众所周知,"鸡兔同笼"问题的数学模型是二元一次整数方程,然而,在小学里学生并不学习二元一次整数方程。可是,"鸡兔同笼"却被广泛地运用到小学教材中:北师大版五年级上册"尝试与猜测"中用它来让学生学会表格列举;苏教版六年级上册将之作为一道练习题来巩固"假设和替换"的策略;而人教版则是浓墨重彩,在六年级上册"数学广角"中详细介绍了"鸡兔同笼"问题的出处、多种解法及实际应用。教学这些内容时,如果仅是就题讲题,就课本讲课本,难免显得过于简单和浅薄。那么,对小学生的数学学习而言,"鸡兔同笼"是否还隐藏着其他的"模型"因素呢?我想至少有三方面是值得关注的:一是内容层面的,即"鸡兔同笼"这类题本身的题型结构特征〔告知两个未知量的和以及两个未知量之间一定的量值关系,求未知量;二是方法层面的,即"假设法"的一般解题思路〔画图、列举、替换等在某种意义上都是"假设";三是思想层面的,即从一个具体的"鸡兔同笼"数学问题出发,在经历了对其解答的过程之后,能将解决它的方法和思路进行扩展运用〔学习"鸡兔同笼",最终的目标并不仅仅是会解答一道"鸡兔同笼",更有其他。有了这样的理解,在教学中,我们就会引导学生在关注教材中所编排内容的同时,注意把握题目的类型、结构和类比运用,用系统的眼光来看待它的教学价值。这些,恰恰是学生到了中学后真正建立二元一次整数方程数学模型的基础。二、"模"。所谓"模",即"建模"。也就是在教学中要帮助学生不断经历将现实问题抽象成数学模型并进行解释和运用。对小学数学而言,"建模"的过程,实际上就是"数学化"的过程,是学生在数学学习中获得某种带有"模型"意义的数学结构的过程。以下是两位老师利用同一素材教学"减法"的片段:[教学片段1]出示情境图。师:请同学们认真观察这两幅图,说一说从图上你看到了什么?生:有5个小朋友在浇花,走了2个,剩下3个。师:你真棒!谁再来说一说。生:原来有5个小朋友在浇花,走了2个小朋友,还剩下3个小朋友。师:很好!你知道怎样列式吗?生:5-2=3。教师听了满意地点点头,板书5-2=3。接着教学减号及其读法。[教学片段2]出示情境图。〔同上师:谁来说一说第一幅图,你看到了什么?生:从图中我看到了有5个小朋友在浇花。师:第二幅图呢?生:第二幅图中有2个小朋友去提水了,剩下3个小朋友。师:你能把两幅图的意思连起来说吗?生:有5个小朋友在浇花,走了2个,还剩下3个。师:同学们观察得很仔细,也说得很好。你们能根据这两幅图的意思提一个数学问题吗?生:有5个小朋友在浇花,走了2个,还剩几个?生〔齐:3个。师:对,大家能不能用圆片代替小朋友,将这一过程摆一摆呢?〔教师在行间指导学生摆圆片,并请一生将圆片摆在情境图的下面。师:〔结合情境图和圆片说明5个小朋友在浇花,走了2个,还剩3个;从5个圆片中拿走2个,还剩3个,都可以用同一个算式〔学生齐接话:5-2=3来表示。〔在圆片下板书:5-2=3生齐读:5减2等于3。师:谁来说一说这里的5表示什么?2、3又表示什么呢?……师:同学们说得真好!在生活中存在着许许多多这样的数学问题,5-2=3还可以表示什么呢?请同桌互相说一说。生1:有5瓶牛奶,喝掉2瓶,还剩3瓶。生2:树上有5只小鸟,飞走2只,还剩3只。……从上述可以看出,运用建模思想来指导小学数学教学,在很大程度上是要在学生的认知过程中建立起一种统摄性、符号化的具有数学结构特征的"模型"载体,通过这样的具有"模型"功能的载体,帮助学生实现数学抽象,为后续学习提供强有力的基础支持。当然,对学生"模型"意识的培养和"建模"方法的指导,要根据具体内容和具体年级而有层次不同的要求,低年级要恰到好处地结合日常实例和常规教学对学生进行"模型"及"模型意识"的渗透、点化,高年级则可以更明确地引导学生关注数学学习中"模型"的存在,培养初步的建模能力。三、"魔"。所谓"魔",即"着魔",也就是学生对"模型"在数学学习中的运用有着深切的体验和感悟,并对之产生好奇,从而在数学学习中能主动地构想模型、建立模型、运用模型。儿童数学教学的终极目标,应该是让学生都懂数学、爱数学,对数学怀有敬畏之心和热爱之情。要实现这样的目标,数学教学就不能只停留在知识和方法层面,而是要深入到数学的"腹地",用数学自身的魅力来吸引学生。正如日本数学家米山国藏所说:"作为知识的数学出校门不到两年就忘了,唯有深深铭记在头脑中的数学的精神、数学的思想、研究的方法和着眼点等,这些随时随地地发生作用,使人终身受益"。总的说来,在数学课堂上,我们教的是数学,面对的是儿童。"磨",侧重于教师对数学本身的理解;"魔",则是要坚持儿童立场,读懂儿童,引领儿童,发展儿童;"模"指向教学过程,是在数学和儿童之间真正搭起一座有意义的数学学习之桥。三者有机统一,互动交融,缔造出小学数学建模教学的至高境界。建模思想在小学数学教学中的运用桐木小学杨同英"让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。"这实际上就是要求把学生学习数学知识的过程当做建立数学模型的过程,并在建模过程中培养学生的数学应用意识,引导学生自觉地用数学的方法去分析、解决生活中的问题。明确要求教师在教学中引导学生建立数学模型,不但要重视其结果,更要关注学生自主建立数学模型的过程,让学生在进行探究性学习的过程中科学地、合理地、有效地建立数学模型。小学生如何形成自己的数学建模思想呢?

1、创设情境,感知数学建模思想。

数学来源于生活,又服务于生活,因此,要将现实生活中发生的与数学学习有关的素材及时引入课堂,要将教材上的内容通过生活中熟悉的事例,以情境的方式在课堂上展示给学生,描述数学问题产生的背景。情景的创设要与社会生活实际、时代热点问题、自然、社会文化等与数学问题有关的各种因素相结合,让学生感到真实、新奇、有趣、可操作,满足学生好奇好动的心理要求。这样很容易激发学生的兴趣,并在学生的头脑中激活已有的生活经验,也容易使学生用积累的经验来感受其中隐含的数学问题,从而促使学生将生活问题抽象成数学问题,感知数学模型的存在。

2、参与探究,主动建构数学模型

数学家华罗庚的经验告诉我们:对书本中的某些原理、定律、公式,我们在学习的时候不仅应该记住它的结论、懂得它的道理,而且还应该设想一下人家是怎样想出来的,怎样一步一步提炼出来的。只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。

3、解决问题,拓展应用数学模型

用所建立的数学模型来解答生活实际中的问题,让学生能体会到数学模型的实际应用价值,体验到所学知识的用途和益处,进一步培养学生应用数学的意识和综合应用数学知识解决问题的能力,让学生体验实际应用带来的快乐。解决问题具体表现在两个方面:一是布置数学题作业,如基本题、变式题、拓展题等;二是生活题作业,让学生在实际生活中应用数学。通过应用真正让数学走入生活,让数学走近学生。用数学知识去解决实际问题的同时拓展数学问题,培养学生的数学意识,提高学生的数学认知水平,又可以促进学生的探索意识、发现问题意识、创新意识和实践意识的形成,使学生在实际应用过程中认识新问题,同化新知识,并构建自己的智力系统。小学数学建模思想的形成过程是一个综合性的过程,是数学能力和其他各种能力协同发展的过程。在数学教学过程中进行数学建模思想的渗透,不仅可以使学生体会到数学并非只是一门抽象的学科,而且可以使学生感觉到利用数学建模的思想结合数学方法解决实际问题的妙处,进而对数学产生更大的兴趣。通过建模教学,可以加深学生对数学知识和方法的理解和掌握,调整学生的知识结构,深化知识层次。同时,培养学生应用数学的意识和自主、合作、探索、创新的精神,为学生的终身学习、可持续发展奠定基础。因此在数学课堂教学中,教师应逐步培养学生数学建模的思想、方法,形成学生良好的思维习惯和用数学的能力。建模思想在小学数学教学中的运用桐木小学杨同英在数学教学中应当引导学生感悟建模过程,发展"模型思想"。在小学,进行数学建模教学具有鲜明的阶段性、初始性特征,即要从学生熟悉的生活和已有的经验出发,引导他们经历将实际问题初步抽象成数学模型并进行解释与运用的过程,进而对数学和数学学习获得更加深刻的理解。数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在小学教学活动中,教师应采取有效措施,加强教学模型思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力,将模型思想渗透到教学中。一、在创设情境时,感知数学建模思想。情景的创设要与社会生活实际,时代热点问题,自然,社会文化等与数学有关系的各种因素相结合。激发学生的兴趣,使学生用积累的生活经验来感受其中隐含的数学问题,从而促进学生将生活问题抽象成数学问题,感知数感知数学模型的存在。学习数学的起点是培养学生以数学眼光发现数学问题,提出数学问题。在教学中教师就应根据学生的年龄及心理特征,为儿童提供有趣的、可探索的、与学生生活实际密切联系的现实情境,引导他们饶有兴趣地走进情境中,去发现数学问题,并提出数学问题。二、在探究知识的过程中,体验模型思想。善于引导学生自主探索、合作交流,对学习过程、学习材料、主动归纳。力求建构出人人都能理解的数学模型。例如:在推导圆柱体积公式一节课中,教师要有目的让学生回顾平行四边形,三角形、梯形、圆几种平面图形面积的推导过程是怎样的?学生会想起通过割、补、平移、旋转等方法拼成学过的图形,那么今天我们要探究的是圆柱的体积,你们怎样来推导它的公式?这样学生很自然的想到一个新知识都是用旧知识来分解,从中找到新知识的内在模型。三、新知识的结论,就是建立数学模型。加法,减法,乘法、除法之间的内在联系。各类应用题的解题规律,各类图形的周长与面积、体积的公式都是各种数学模型,学生有了这种模型思想才能应用它解释生活中的现实问题。在解决问题中,拓展应用数学模型。用所建立的数学模型来解答生活实际中的问题,让学生能体会到数学模型的实际应用价值,体验到所学知识的用途和益处,进一步培养学生应用数学的意识和综合应用数学解决问题的能力,让学生体验实际应用带来的快乐。例如:我在教学"平行四边形面积的计算"时,采用了探究式的学习方法,使学生在获取数学知识的同时,数学思维和学习能力也得到了培养。1.让学生充分参与与操作活动数学知识具有抽象性,但来源于生活实际,加强教学中的实践活动,不仅有助于学生理解抽象的数学知识,而且可以通过让学生参与操作活动,促进学生的思维发展。如:在探究平行四边形面积的计算方法时,我为学生设计了这样的操作活动:让他们通过剪一剪,拼一拼,想办法把平行四边形转化为已学过的图形,然后利用已有知识来推导它的面积计算方法,这就为学生创设一个"做数学"的机会,学生在操作前必须动脑思考,想好了才能动手剪拼,通过实际操作,多数学生都将平行四边形剪拼成了长方形,这样学生在积极参与操作活动的过程中,不仅促进了他们的思维发展,而且提高了他们的操作技能。2.让学生积极参与交流活动四、解释与应用中体验模型思想的实用性。如在学生掌握了速度、时间、路程之间关系后,先进行单项练习,然后出示这样的变式题:1.汽车3小时行驶了270千米,5小时可行驶多少千米?2.飞机的速度是每小时900千米,飞机早上11:00起飞,14:00到站,两站之间的距离是多少千米?学生在掌握了速度乘时间等于路程这一模型后,进行变式练习,学生基本能正确解答,说明学生对基本数学模型已经掌握,并能够从3小时行驶了270千米中找到需要的速度,从11:00至14:00中找到所需时间。虽然两题叙述不同,但都可以运用同一个数学模型进行解答。掌握了数学模型,学生解答起数学问题来得心应手。综上所述,数学建模思想的形成过程是一个综合性的过程,是数学能力和其他各种能力协同发展的过程。在数学教学过程中进行数学建模思想的渗透,可以使学生感觉到利用数学建模的思想解决实际问题的妙处,进而对数学产生更大的兴趣。这也给我们一些启发:在对学生进行模型思想渗透时,要从现实生活出发,从实物出发,这样才可以让学生更快地接受,更快地理解;在渗透这些思想时,教师首先需站在更高的高度上去考虑;在教学过程中,通过引导学生处理问题,可以让学生更快、更有兴趣地跟踪教师的思路。在小学数学教材中,模型无处不在。小学生学习数学知识的过程,实际上就是对一系列数学模型的理解、把握的过程。在小学数学教学中,重视渗透模型化思想,帮助小学生建立并把握有关的数学模型,有利于学生握住数学的本质。通过建模教学,培养学生应用数学的意识和自主、合作、探索、创新的精神,为学生的终身学习、可持续发展奠定基础。因此在数学课堂教学中,逐步培养学生数学建模的思想,形成学生良好的思维习惯和应用数学的能力。《建模思想在小学数学教学中的运用》课题总结桐木小学杨同英小学生数学建模活动的开展,不仅能够从小培养学生自觉应用数学的意识和解决问题的能力,同时还能将《标准》所倡导的"人人学有价值的数学;人人都能获得必要的数学;不同的人在数学上得到不同的发展。"等等这些新的数学教育理念落到实处。那么,什么是数学建模呢?一、什么是数学建模数学建模的概念有广义和狭义之分。从广义上说,数学中的各种概念、各种公式、各种方程式、各种理论体系,以及由公式系列构成的算法系统等等都是现实世界的数学模型。按照这种观点,整个数学也可以说是一门关于数学建模的科学。因此,本文所讨论的数学建模主要指的是狭义上的数学建模。从狭义上看,什么是数学建模呢?目前在我国对数学建模还没有一个十分权威的定义,但比较一致的认识是:"数学模型是对现实世界中的原型,为了某一个特定目的,作出一些必要的简化和假设,运用适当的数学工具得到一个数学结构。而数学建模它不但包含数学模型的建立,而且是对数学模型的求解和验证,并用该数学模型所提供的解答来解释实际问题。"从数学建模的概念可以发现:数学建模实际上指的是一种用数学的知识、思想和方法来解决实际问题的过程和技术。实际问题的解决往往在很大的程度上取决于我们所建立的数学模型的好坏。因此,数学建模的核心和灵魂就是舍去实际问题中的一些无关紧要的东西,将实际问题转化为数学问题。同时,数学建模也包括借助数学的知识、思想和方法,和计数器、计算机等工具解决数学问题后再回归到实际问题进行检验和应用的循环往复而不断深化的过程。可以说,数学建模的过程是一个"创造"的过程。从"数学建模"这个概念的本质特征来看,在我们小学数学的日常教学中,常常进行着不同层次的数学建模活动。我们的小学生已经有了数学建模的意识,只不过没有从理论角度将其概括出来而已。"数学建模"思想在小学数学教学中的有效渗透,能够启迪学生的智慧、增强学生应用数学的意识,充分体现学习数学的价值。二、小学生数学建模的可行性探究小学生主要是学习间接知识,特别是小学低年级学生以形象思维为主,抽象思维能力十分微弱。因此,笔者认为将数学建模思想融入小学数学教学主要是针对小学高年级〔4—6的数学教学而言的。那么,将数学建模思想融入小学数学教学可行吗?1、小学生数学建模可行的理论依据面向21世纪的《义务教育阶段的数学课程标准》已经出版。新《标准》首次提到了数学建模的概念。同时,新《标准》还强调:"要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。"在新课程改革中,我们倡导建构主义的学习理论。建构主义提倡在教师指导下以学习者为中心,既强调学习者的认知主题作用,又不忽视教师的引导作用。教师是意义建构的帮助者、促进者,而不是知识的提供者和灌输者,教师的作用从传统的传递知识的权威转变为学生学习的辅导者,成为学生学习的高级伙伴和合作者。数学建模,渗透了建构主义的先进思想,作为一种学习活动的模式,是将建构主义理论运用到数学教学中的最佳手段。在现代教育

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论