2024步步高考二轮数学新教材讲义专题六 第4讲 母题突破1 范围、最值问题1_第1页
2024步步高考二轮数学新教材讲义专题六 第4讲 母题突破1 范围、最值问题1_第2页
2024步步高考二轮数学新教材讲义专题六 第4讲 母题突破1 范围、最值问题1_第3页
2024步步高考二轮数学新教材讲义专题六 第4讲 母题突破1 范围、最值问题1_第4页
2024步步高考二轮数学新教材讲义专题六 第4讲 母题突破1 范围、最值问题1_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024步步高考二轮数学新教材讲义第4讲圆锥曲线的综合问题[考情分析]1.圆锥曲线的综合问题是高考考查的重点内容,常见的热点题型有范围、最值问题,定点、定直线、定值问题及探索性问题.2.以解答题的形式压轴出现,难度较大.母题突破1范围、最值问题母题(2023·全国甲卷)已知直线x-2y+1=0与抛物线C:y2=2px(p>0)交于A,B两点,|AB|=4eq\r(15).(1)求p;(2)设F为C的焦点,M,N为C上两点,eq\o(FM,\s\up6(→))·eq\o(FN,\s\up6(→))=0,求△MFN面积的最小值.思路分析❶联立方程利用弦长求p❷设直线MN:x=my+n和点M,N的坐标❸利用eq\o(FM,\s\up6(→))·eq\o(FN,\s\up6(→))=0,得m,n的关系❹写出S△MFN的面积❺利用函数性质求S△MFN面积的最小值________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子题1](2023·武汉模拟)已知椭圆C:eq\f(x2,4)+y2=1,椭圆C的右顶点为A,若点P,Q在椭圆C上,且满足直线AP与AQ的斜率之积为eq\f(1,20),求△APQ面积的最大值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子题2](2023·深圳模拟)已知双曲线C:x2-y2=1,设点A为C的左顶点,若过点(3,0)的直线l与C的右支交于P,Q两点,且直线AP,AQ与圆O:x2+y2=1分别交于M,N两点,记四边形PQNM的面积为S1,△AMN的面积为S2,求eq\f(S1,S2)的取值范围.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________规律方法求解范围、最值问题的常见方法(1)利用判别式来构造不等关系.(2)利用已知参数的范围,在两个参数之间建立函数关系.(3)利用隐含或已知的不等关系建立不等式.(4)利用基本不等式.1.(2023·佛山模拟)在平面直角坐标系中,点O为坐标原点,Meq\b\lc\(\rc\)(\a\vs4\al\co1(-1,0)),N(1,0),Q为线段MN上异于M,N的一动点,点P满足eq\f(|PM|,|QM|)=eq\f(|PN|,|QN|)=2.(1)求点P的轨迹E的方程;(2)点A,C是曲线E上两点,且在x轴上方,满足AM∥NC,求四边形AMNC面积的最大值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.(2023·温州模拟)已知抛物线C1:y2=4x-4与双曲线C2:eq\f(x2,a2)-eq\f(y2,4-a2)=1(1<a<2)相交于A,B两点,F是C2的右焦点,直线AF分别交C1,C2于C,D(不同于A,B点)两点,直线BC,BD分别交x轴于P,Q两点.(1)设A(x1,y1),C(x2,y2),求证:y1y2是定值;(2)求eq\f(|FQ|,|FP|)的取值范围.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________母题突破2定点(定直线)问题母题已知双曲线C:eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)的离心率为eq\f(2\r(3),3),左、右焦点分别为F1,F2,点P的坐标为(3,1),且eq\o(PF1,\s\up6(→))·eq\o(PF2,\s\up6(→))=6.(1)求双曲线C的方程;(2)过点P的动直线l与C的左、右两支分别交于A,B两点,若点M在线段AB上,满足eq\f(|AP|,|AM|)=eq\f(|BP|,|BM|),证明:点M在定直线上.思路分析❶利用离心率和eq\o(PF1,\s\up6(→))·eq\o(PF2,\s\up6(→))=6求方程❷设直线方程y-1=kx-3并联立❸利用比例关系eq\f(|AP|,|AM|)=eq\f(|BP|,|BM|)列式❹将根与系数的关系代入化简❺消去参数得点在定直线上________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子题1](2023·信阳模拟)已知椭圆C:eq\f(x2,4)+eq\f(y2,2)=1的左、右顶点分别为A1,A2,过点D(1,0)的直线l与椭圆C交于异于A1,A2的M,N两点.若直线A1M与直线A2N交于点P,证明:点P在定直线上,并求出该定直线的方程.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子题2](2023·岳阳模拟)已知双曲线C:x2-eq\f(y2,3)=1,P为双曲线的右顶点,设直线l不经过P点且与C相交于A,B两点,若直线PA与直线PB的斜率之和为-1.证明:直线l恒过定点.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________规律方法动线过定点问题的两大类型及解法(1)动直线l过定点问题,解法:设动直线方程(斜率存在)为y=kx+t,由题设条件将t用k表示为t=mk,得y=k(x+m),故动直线过定点(-m,0).(2)动曲线C过定点问题,解法:引入参变量建立曲线C的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.1.(2023·襄阳模拟)过抛物线x2=2py(p>0)内部一点P(m,n)作任意两条直线AB,CD,如图所示,连接AC,BD并延长交于点Q,当P为焦点并且AB⊥CD时,四边形ACBD面积的最小值为32.(1)求抛物线的方程;(2)若点P(1,1),证明:点Q在定直线上运动,并求出定直线方程.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.(2023·全国乙卷)已知椭圆C:eq\f(y2,a2)+eq\f(x2,b2)=1(a>b>0)的离心率是eq\f(\r(5),3),点A(-2,0)在C上.(1)求C的方程;________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)过点(-2,3)的直线交C于P,Q两点,直线AP,AQ与y轴的交点分别为M,N,证明:线段MN的中点为定点.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________母题突破3定值问题母题(2023·黄山模拟)已知椭圆E:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)过点Meq\b\lc\(\rc\)(\a\vs4\al\co1(\r(3),\f(1,2))),点A为下顶点,且AM的斜率为eq\f(\r(3),2).(1)求椭圆E的方程;(2)如图,过点B(0,4)作一条与y轴不重合的直线,该直线交椭圆E于C,D两点,直线AD,AC分别交x轴于H,G两点,O为坐标原点.证明:|OH||OG|为定值,并求出该定值.思路分析❶结合点的坐标和AM的斜率列方程组❷设直线BC的方程并与椭圆的方程联立❸得到x1+x2,x1x2❹写出直线AD,AC的方程并求出H,G的横坐标❺化简运算|OH||OG|________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子题1](2023·西安模拟)如图,在平面直角坐标系中,椭圆E:eq\f(x2,8)+eq\f(y2,4)=1,A,B分别为椭圆E的左、右顶点.已知图中四边形ABCD是矩形,且|BC|=4,点M,N分别在边BC,CD上,AM与BN相交于第一象限内的点P.若点P在椭圆E上,证明:eq\f(|BM|,|CN|)为定值,并求出该定值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子题2](2023·衡水质检)已知E(2,2)是抛物线C:y2=2x上一点,经过点(2,0)的直线l与抛物线C交于A,B两点(不同于点E),直线EA,EB分别交直线x=-2于点M,N.已知O为原点,求证:∠MON为定值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________规律方法求解定值问题的两大途径(1)由特例得出一个值(此值一般就是定值)→证明定值:将问题转化为证明待证式与参数(某些变量)无关.(2)先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值.1.已知抛物线C:y2=2px(p>0),F为其焦点,若圆E:(x-1)2+y2=16与抛物线C交于A,B两点,且|AB|=4eq\r(3).(1)求抛物线C的方程;(2)若点P为圆E上任意一点,且过点P可以作抛物线C的两条切线PM,PN,切点分别为M,N.求证:|MF|·|NF|恒为定值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.(2023·沧州模拟)已知双曲线C:eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)经过点eq\b\lc\(\rc\)(\a\vs4\al\co1(3,\f(\r(6),2))),右焦点为F(c,0),且c2,a2,b2成等差数列.(1)求C的方程;________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)过F的直线与C的右支交于P,Q两点(P在Q的上方),PQ的中点为M,M在直线l:x=2上的射影为N,O为坐标原点,设△POQ的面积为S,直线PN,QN的斜率分别为k1,k2,证明:eq\f(k1-k2,S)是定值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________母题突破4探究性问题母题(2023·廊坊质检)已知椭圆C:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)经过点A(-2,0),且两个焦点及短轴两顶点围成四边形的面积为4.(1)求椭圆C的方程和离心率;(2)设P,Q为椭圆C上两个不同的点,直线AP与y轴交于点E,直线AQ与y轴交于点F,且P,O,Q三点共线.其中O为坐标原点.问:在x轴上是否存在点M,使得∠AME=∠EFM?若存在,求点M的坐标;若不存在,请说明理由.思路分析❶代入点,结合面积求方程和离心率❷设点P,Q,表示出直线AP,AQ的方程❸求出E,F的坐标❹由∠AME=∠EFM得eq\o(ME,\s\up6(→))·eq\o(MF,\s\up6(→))=0❺利用向量运算求点M的坐标________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子题1](2023·西安模拟)已知椭圆C:eq\f(x2,4)+eq\f(y2,3)=1,过点Teq\b\lc\(\rc\)(\a\vs4\al\co1(\r(3),0))的直线交该椭圆于P,Q两点,若直线PQ与x轴不垂直,在x轴上是否存在定点S(s,0),使得∠PST=∠QST恒成立?若存在,求出s的值;若不存在,请说明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子题2]已知双曲线C:eq\f(y2,a2)-eq\f(x2,b2)=1(a>0,b>0),直线l在x轴上方与x轴平行,交双曲线C于A,B两点,直线l交y轴于点D.当l经过C的焦点时,点A的坐标为(6,4).(1)求C的方程;(2)设OD的中点为M,是否存在定直线l,使得经过M的直线与C交于P,Q两点,与线段AB交于点N(N,D不重合),eq\o(PM,\s\up6(→))=λeq\o(PN,\s\up6(→)),eq\o(MQ,\s\up6(→))=λeq\o(QN,\s\up6(→))均成立?若存在,求出l的方程;若不存在,请说明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________规律方法探索性问题的求解策略(1)若给出问题的一些特殊关系,要探索一般规律,并能证明所得规律的正确性,通常要对已知关系进行观察、比较、分析,然后概括一般规律.(2)若只给出条件,求“不存在”“是否存在”等语句表述问题时,一般先对结论给出肯定的假设,然后由假设出发,结合已知条件进行推理,从而得出结论.1.已知抛物线C:x2=2py(p>0),点P(2,8)在抛物线上,直线y=kx+2交C于A,B两点,M是线段AB的中点,过M作x轴的垂线交C于点N.(1)求点P到抛物线焦点的距离;(2)是否存在实数k使得eq\o(NA,\s\up6(→))·eq\o(NB,\s\up6(→))=0,若存在,求k的值;若不存在,请说明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.(2023·池州模拟)如图,点A为椭圆E:eq\f(x2,4)+y2=1的上顶点,圆C:x2+y2=1,过坐标原点O的直线l交椭圆E于M,N两点.(1)求直线AM,AN的斜率之积;(2)设直线AM:y=kx+1(k≠0),AN与圆C分别交于点P,Q,记直线MN,PQ的斜率分别为k1,k2,探究是否存在实数λ,使得k1=λk2?若存在,求出λ的值;若不存在,请说明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________规范答题6解析几何(12分)(2023·新高考全国Ⅰ)在直角坐标系Oxy中,点P到x轴的距离等于点P到点eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,2)))的距离,记动点P的轨迹为W.(1)求W的方程;[切入点:直接法求轨迹方程](2)已知矩形ABCD有三个顶点在W上,证明:矩形ABCD的周长大于3eq\r(3).[关键点:对周长放缩](1)解设P(x,y),则|y|=eq\r(x2+\b\lc\(\rc\)(\a\vs4\al\co1(y-\f(1,2)))2),❶两边同时平方化简得y=x2+eq\f(1,4),故W:y=x2+eq\f(1,4).(2分)(2)证明设矩形的三个顶点Aeq\b\lc\(\rc\)(\a\vs4\al\co1(a,a2+\f(1,4))),Beq\b\lc\(\rc\)(\a\vs4\al\co1(b,b2+\f(1,4))),Ceq\b\lc\(\rc\)(\a\vs4\al\co1(c,c2+\f(1,4)))在W上,且a<b<c,易知矩形四条边所在直线的斜率均存在,且不为0,则kAB·kBC=-1,a+b<b+c,(4分)令kAB=eq\f(b2+\f(1,4)-\b\lc\(\rc\)(\a\vs4\al\co1(a2+\f(1,4))),b-a)=a+b=m<0,同理令kBC=b+c=n>0,且mn=-1,则m=-eq\f(1,n),❷(6分)设矩形周长为C,由对称性不妨设|m|≥|n|,kBC-kAB=c-a=n-m=n+eq\f(1,n),则eq\f(1,2)C=|AB|+|BC|=(b-a)eq\r(1+m2)+(c-b)eq\r(1+n2)❸≥(c-a)eq\r(1+n2)=eq\b\lc\(\rc\)(\a\vs4\al\co1(n+\f(1,n)))eq\r(1+n2),n>0,❹(8分)易知eq\b\lc\(\rc\)(\a\vs4\al\co1(n+\f(1,n)))eq\r(1+n2)>0.则令f(x)=eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(1,x)))2(1+x2),x>0,❺f′(x)=2eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(1,x)))2eq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(1,x))),令f′(x)=0,解得x=eq\f(\r(2),2),当x∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(\r(2),2)))时,f′(x)<0,此时f(x)单调递减,当x∈eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2),+∞))时,f′(x)>0,此时f(x)单调递增,则f(x)min=f

eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))=eq\f(27,4),❻(10分)故eq\f(1,2)C≥eq\r(\f(27,4))=eq\f(3\r(3),2),即C≥3eq\r(3).当C=3eq\r(3)时,n=eq\f(\r(2),2),m=-eq\r(2),与当(b-a)eq\r(1+m2)=(b-a)eq\r(1+n2),即m=n时等号成立,矛盾,❼故C>3eq\r(3),得证.(12分)①处直接法求轨迹方程②处得到m,n之间的关系③处用弦长公式表示周长④处进行周长放缩⑤处建立函数⑥处利用导数求最值⑦处排除边界值母题突破1范围、最值问题母题解(1)设A(xA,yA),B(xB,yB),由eq\b\lc\{\rc\(\a\vs4\al\co1(x-2y+1=0,,y2=2px,))可得y2-4py+2p=0,所以yA+yB=4p,yAyB=2p,所以|AB|=eq\r(5)×eq\r(yA+yB2-4yAyB)=4eq\r(15),即2p2-p-6=0,解得p=2(负值舍去).(2)由(1)知y2=4x,所以焦点F(1,0),显然直线MN的斜率不可能为零,设直线MN:x=my+n,M(x1,y1),N(x2,y2),由eq\b\lc\{\rc\(\a\vs4\al\co1(y2=4x,,x=my+n,))可得y2-4my-4n=0,所以y1+y2=4m,y1y2=-4n,Δ=16m2+16n>0⇒m2+n>0,因为eq\o(FM,\s\up6(→))·eq\o(FN,\s\up6(→))=0,eq\o(FM,\s\up6(→))=(x1-1,y1),eq\o(FN,\s\up6(→))=(x2-1,y2),所以(x1-1)(x2-1)+y1y2=0,即(my1+n-1)(my2+n-1)+y1y2=0,即(m2+1)y1y2+m(n-1)(y1+y2)+(n-1)2=0,将y1+y2=4m,y1y2=-4n代入得,4m2=n2-6n+1,所以4(m2+n)=(n-1)2>0,所以n≠1,且n2-6n+1≥0,解得n≥3+2eq\r(2)或n≤3-2eq\r(2).设点F到直线MN的距离为d,所以d=eq\f(|n-1|,\r(1+m2)),|MN|=eq\r(1+m2)eq\r(y1+y22-4y1y2)=eq\r(1+m2)eq\r(16m2+16n)=eq\r(1+m2)eq\r(4n2-6n+1+16n)=2eq\r(1+m2)|n-1|,所以△MFN的面积S=eq\f(1,2)×|MN|×d=eq\f(1,2)×2eq\r(1+m2)·|n-1|×eq\f(|n-1|,\r(1+m2))=(n-1)2,而n≥3+2eq\r(2)或n≤3-2eq\r(2),所以当n=3-2eq\r(2)时,△MFN的面积最小,为Smin=(2-2eq\r(2))2=12-8eq\r(2)=4(3-2eq\r(2)).[子题1]解易知直线AP与AQ的斜率同号,所以直线PQ不垂直于x轴,故可设直线PQ:y=kx+m,P(x1,y1),Q(x2,y2),由eq\b\lc\{\rc\(\a\vs4\al\co1(\f(x2,4)+y2=1,,y=kx+m,))可得(1+4k2)x2+8mkx+4m2-4=0,所以x1+x2=eq\f(-8mk,1+4k2),x1x2=eq\f(4m2-4,1+4k2),Δ=16(4k2+1-m2)>0,即4k2+1>m2,而kAPkAQ=eq\f(1,20),A(2,0),所以eq\f(y1,x1-2)·eq\f(y2,x2-2)=eq\f(1,20),化简可得20(kx1+m)(kx2+m)=(x1-2)(x2-2),即20k2x1x2+20km(x1+x2)+20m2=x1x2-2(x1+x2)+4,20k2·eq\f(4m2-4,1+4k2)+20km·eq\f(-8mk,1+4k2)+20m2=eq\f(4m2-4,1+4k2)-2×eq\f(-8mk,1+4k2)+4,整理得6k2+mk-m2=0,所以m=-2k或m=3k,所以直线PQ:y=k(x-2)或y=k(x+3),因为直线PQ不经过点A(2,0),所以直线PQ经过定点(-3,0),即m=3k.所以直线PQ的方程为y=k(x+3),易知k≠0,设定点B(-3,0),S△APQ=eq\b\lc\|\rc\|(\a\vs4\al\co1(S△ABP-S△ABQ))=eq\f(1,2)|AB||y1-y2|=eq\f(5,2)|k|eq\b\lc\|\rc\|(\a\vs4\al\co1(x1-x2))=eq\f(5,2)|k|eq\r(x1+x22-4x1x2)=eq\f(5,2)|k|eq\r(\b\lc\(\rc\)(\a\vs4\al\co1(\f(-8mk,1+4k2)))2-4×\f(4m2-4,1+4k2))=eq\f(5,2)|k|·eq\f(\r(164k2+1-m2),1+4k2)=eq\f(10\r(\b\lc\(\rc\)(\a\vs4\al\co1(1-5k2))k2),1+4k2),因为Δ>0,且m=3k,所以1-5k2>0,所以0<k2<eq\f(1,5),设t=4k2+1∈eq\b\lc\(\rc\)(\a\vs4\al\co1(1,\f(9,5))),所以S△APQ=eq\f(5,2)eq\r(\f(-5t2+14t-9,t2))=eq\f(5,2)eq\r(-9\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,t)-\f(7,9)))2+\f(4,9))≤eq\f(5,3),当且仅当t=eq\f(9,7),即k2=eq\f(1,14)时取等号,即△APQ面积的最大值为eq\f(5,3).[子题2]解如图所示,设直线lPQ的方程为x=ty+3,P(x1,y1),Q(x2,y2),由eq\b\lc\{\rc\(\a\vs4\al\co1(x=ty+3,,x2-y2=1,))得(t2-1)y2+6ty+8=0,因为直线l与双曲线C的右支交于两点,所以eq\b\lc\{\rc\(\a\vs4\al\co1(t2-1≠0,,Δ=6t2-32t2-1>0,,y1y2=\f(8,t2-1)<0,))解得-1<t<1,y1+y2=eq\f(-6t,t2-1),y1y2=eq\f(8,t2-1),所以kAP·kAQ=eq\f(y1,x1+1)·eq\f(y2,x2+1)=eq\f(y1y2,\b\lc\(\rc\)(\a\vs4\al\co1(ty1+4))\b\lc\(\rc\)(\a\vs4\al\co1(ty2+4)))=eq\f(y1y2,t2y1y2+4ty1+y2+16)=eq\f(\f(8,t2-1),t2·\f(8,t2-1)+4t·\f(-6t,t2-1)+16)=eq\f(8,8t2-24t2+16t2-16)=-eq\f(1,2),设AP:x=m1y-1,AQ:x=m2y-1,且|m1|>1,|m2|>1,所以eq\f(1,m1)·eq\f(1,m2)=-eq\f(1,2),即m1·m2=-2,所以|m1|·|m2|=2,又因为|m2|=eq\f(2,|m1|)>1,所以1<|m1|<2,由eq\b\lc\{\rc\(\a\vs4\al\co1(x=m1y-1,,x2-y2=1,))得(meq\o\al(2,1)-1)y2-2m1y=0,所以yP=eq\f(2m1,m\o\al(2,1)-1),同理可得yQ=eq\f(2m2,m\o\al(2,2)-1),由eq\b\lc\{\rc\(\a\vs4\al\co1(x=m1y-1,,x2+y2=1,))得(meq\o\al(2,1)+1)y2-2m1y=0,所以yM=eq\f(2m1,m\o\al(2,1)+1),同理可得yN=eq\f(2m2,m\o\al(2,2)+1),所以eq\f(S△APQ,S△AMN)=eq\f(\f(1,2)|AP||AQ|sin∠PAQ,\f(1,2)|AM||AN|sin∠MAN)=eq\f(|AP|,|AM|)·eq\f(|AQ|,|AN|)=eq\f(yP,yM)·eq\f(yQ,yN)=eq\f(\f(2m1,m\o\al(2,1)-1),\f(2m1,m\o\a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论