版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGEPAGE1安徽省“皖江名校联盟”2024届高三上学期12月月考数学试题一、选择题1.已知复数,则的共轭复数是()A.2 B. C. D.〖答案〗D〖解析〗,则共轭复数是.故选:D.2.集合,集合,,则()A. B.C. D.〖答案〗D〖解析〗集合,,或,,,,所以,故选项A不正确;,故选项B不正确;或,故选项C不正确;,故选项D正确;故选:D.3.函数,则下列函数中为奇函数的是()A. B.C. D.〖答案〗B〖解析〗关于点对称,故将的图像向左平移1个单位长度,再向下平移2个单位长度后,图像关于原点对称,(事实上为奇函数),故选:B.4.已知向量,若,则()A. B.C. D.〖答案〗D〖解析〗因为,所以,,由可得,,即,整理得:.故选:D.5.2022年11月29日神舟十五号载人飞船发射任务取得圆满成功,开启了我国空间站应用发展的新阶段.在太空站内有甲,乙、丙三名航天员,按照一定顺序依次出仓进行同一试验、每次只派一人、每人最多出仓一次,且时间不超过10分钟.若第一次试验不成功,返仓后派下一人重复进行试验,若试验成功终止试验.已知甲,乙,丙10分钟内试验成功的概率分别为,,,每人试检能否成功相互独立,则试验成功的概率为()A. B. C. D.〖答案〗D〖解析〗法一:试验任务不成功的的概率是,所以成功的概率是法二:不妨设按照甲乙丙顺序依次出仓进行试验,设试验任务成功的事件,甲成功的事件,甲不成功乙成功的事件,甲乙都不成功丙成立的事件,,,,因为事件,,互斥,所以试验任务成功的概率.故选:D.6.在中,,BC边上的高等于,则()A. B. C. D.〖答案〗C〖解析〗设,故选C.7.已知数列对任意满足,则()A.3032 B.3035 C.3038 D.3041〖答案〗C〖解析〗因为,所以,两式相减得:,令得,所以,所以,当时,.故选:C.8.在中,,,E,F,G分别为三边,,的中点,将,,分别沿,,向上折起,使得A,B,C重合,记为,则三棱锥的外接球表面积的最小值为()A. B. C. D.〖答案〗B〖解析〗设,,由题设.三棱锥中,,,,将放在棱长为x,y,z的长方体中,如图,则有,三棱锥的外接球就是长方体的外接球,所以,由基本不等式,当且仅当时等号成立,所以外接球表面积.故选:B.二、选择题9.已知数列的前项和为,则下列说法正确的是()A. B.数列是递增数列C.数列的最小项为和 D.满足的最大正整数〖答案〗ABD〖解析〗当时,;当时,;.数列是递增数列,故选项A、B正确;,当或时最小,即数列的最小项为和,故选项C错误,令,得,,即满足的最大正整数,故选项D正确.故选:ABD.10.设,,满足,则下列说法正确的是()A.的最大值是 B.的最小值是9C.的最小值是 D.的最小值是1〖答案〗BC〖解析〗对于A,正实数a,b满足,所以,则,即,当且仅当,即等号成立,所以有最大值,故A错误;对于B,,当且仅当时等号成立,则有最小值9,故B正确;对于C,正实数a,b满足,则,故,所以,则当时,有最小值,故C正确;对于D,结合C可知,,则当时,有最小值,故D错误.故选:BC.11.已知圆台的轴截面如图所示,其上、下底面圆的半径分别为1和3,母线长为4,E是母线的中点,则()A.圆台的侧面积为B.圆台的内切球的表面积为C.圆台的体积为D.在圆台侧面上从到的最短路径的长度为〖答案〗ACD〖解析〗轴截面梯形的上底为2,下底为6,高为,母线长为,设侧面展开图的扇环对应的圆心为,,,所以侧面展开图是半圆环(如图),所以圆台的侧面积,圆台的体积.因为梯形有半径为的内切圆(两组对边的和相等),所以圆台的内切球半径为,表面积为.在圆台侧面上从到的最短路径,在展开图中是线段.故选:ACD12.已知函数,则()A.时,函数在上单调递增B.时,若有3个零点,则实数的取值范围是C.若直线与曲线有3个不同的交点,,,且,则D.若存在极值点,且,其中,则〖答案〗BD〖解析〗对于A:求导,当时,有2个不相等的实根,,在区间上,单调递减,故选项A错误.对于B:当时,令,得,,若有3个零点,则极大值,极小值,实数的取值范围是,故选项B正确.对于C:令二阶导数,得,则三次函数的对称中心是.当直线与曲线有3个不同的交点,,,且时,点一定是对称中心,所以,故选项C错误.对于D:若存在极值点,则,,.令,得,因为,于是,所以,化简得:,因为,故,于,即.故选项D正确.故选:BD.三、填空题13.在一次篮球比赛中,某支球队共进行了8场比赛,得分分别为29,30,38,25,37,40,42,32,那么这组数据的第75百分位数为______.〖答案〗39〖解析〗8场比赛的得分从小到大排列为:25,29,30,32,37,38,40,42,因为,所以第75百分位数为.故〖答案〗为:3914.设向量和满足,,则的值为__________.〖答案〗2〖解析〗因为,所以,,所以.故〖答案〗为:215.已知函数,若不等式恒成立,则的最小值为__________.〖答案〗〖解析〗由函数在上单调递增,所以函数在上单调递减,且,所以,,由函数单调性可得.所以,构造函数,,当时,,在区间单调递增,所以,所以恒成立,构造函数,,当,,在区间上单调递增;当,,在区间上单调递减;所以当时取得极大值也是最大值,因此,所以,的最小值为.故〖答案〗为:.16.若是关于的方程(a,b都是整数)的一个实根,则__________.〖答案〗0〖解析〗因为,所以,所以,又,所以,又因为,所以,,则.故〖答案〗为:0四、解答题17.函数的部分图象如图所示.(1)求函数的〖解析〗式;(2)将函数的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,求函数在上的值域.解:(1)观察图象可得,函数的周期,解得,即,由,得,即,,而,则,所以函数的〖解析〗式是.(2)将的图象向左平移个单位长度,可得到函数的图象,再将所得图象上各点的横坐标缩短为原来的,纵坐标不变,得到函数的图象,则,当时,,则,所以,因此在上的值域为.18.从2021年秋季学期起,安徽省启动实施高考综合改革,实行高考科目“”模式,“3”指语文、数学、外语三门统考学科,以原始分数计入高考成绩;“1”指考生从物理、历史两门学科中“首选”一门学科,以原始分数计入高考成绩;“2”指考生从政治、地理、生物、生物四门学科中“再选”两门学科,以等级分计入高考成绩.按照方案,再选学科的等级分赋分规则如下,将考生原始成绩从高到低划分为A,B,C,D,E五个等级,各等级人数所占比例及赋分区间如下表:等级ABCDE人数比例15%35%35%13%2%赋分区间将各等级内考生的原始分依照等比例转换法分别转换到赋分区间内,得到等级分,转换公式为,其中,分别表示原始分区间的最低分和最高分,,分别表示等级赋分区间的最低分和最高分,表示考生的原始分,表示考生的等级分,规定原始分为时,等级分为.某次生物考试的原始分最低分为45,最高分为94,呈连续整数分布,分成五组:第一组,第二组,第三组,第四组,第五组,绘制成如图所示的频率分布直方图.已知第一、二组的频率之和为0.3,第一组和第五组的频率相同.(1)根据频率分布直方图求a,b的值,并估计此次生物考试原始分的平均值;(2)按照等级分赋分规则,估计此次考试生物成绩A等级的原始分区间;(3)用估计的结果近似代替原始分区间,若某学生生物成绩的原始分为83,试计算其等级分.解:(1)由题意知:,解得,故每组的频率依次为:0.05,0.25,0.45,0.2,0.05,所以生物原始分的平均值等于分.(2)由频率分布直方图知,原始分成绩位于区间的占比为,位于区间的占比为,因为成绩等级占比为,所以等级的原始分区间最低分位于区间,估计等级的原始分区间的最低分为分,已知最高分为94,所以估计此次考试生物成绩等级的原始分区间为.(3)由,解得,该学生的等级分为89分.19.如图,在四棱锥中,底面是边长为4的菱形,,点在线段上,,平面平面.(1)求四面体的体积;(2)求直线与平面所成角的正弦值.解:(1)取的中点,连接,过点作的平行线,在菱形中,为等边三角形,又底面是边长为4的菱形,,且,又平面平面,平面平面平面,平面,又平面,又平面,又,如图以点为原点,建立空间直角坐标系,,取的中点,连接,则,,,设,则,由,得,即,设,则,,,;(2)设平面的一个法向量为,由,得取,又,∴直线与平面所成角的正弦值为:.20.记的内角A,B,C的对边分别为a,b,c,满足.(1)求;(2)若角的平分线交于点,且,求面积的最小值.解:(1)由已知和正弦定理可得:,所以.又因为,,所以或者.当时,,;当时,与题设不符.综上所述,.(2)面积,由是角平分线,,因为,得,即,由基本不等式,,当且仅当时等号成立.所以面积.故面积的最小值.21.已知数列满足,.(1)证明:数列为等比数列,并求数列的通项公式;(2)设,证明:对任意成立.(1)证明:由已知得,因此,又,所以数列是首项为,公比为的等比数列,因此,所以.(2)证明:由已知,,,…,显然单调递增,.当且是奇数时,,所以.当且是偶数时,则是奇数,有,所以,对任意,.22.设函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版智能家居安防系统试用合同3篇
- 二零二五版办公家具租赁与办公空间智能化改造合同2篇
- 二零二五年度国际商务考察合同范本3篇
- 二零二五年度金融机构贷款合同风险评估与管理指南3篇
- 二零二五年度某零售商与第三方支付平台就支付服务合作合同2篇
- 敬老院二零二五年度土地承包及社区服务一体化合同3篇
- 二零二五年船舶通信设备维护船员聘用合同3篇
- 二零二五年智慧交通项目合作开发合同范本3篇
- 二零二五年度搬家搬运服务合同范本2篇
- 二零二五版导游人员旅游活动组织聘用合同3篇
- 深圳2024-2025学年度四年级第一学期期末数学试题
- 中考语文复习说话要得体
- 《工商业储能柜技术规范》
- 华中师范大学教育技术学硕士研究生培养方案
- 医院医学伦理委员会章程
- 初中班主任案例分析4篇
- 公司7s管理组织实施方案
- Q∕GDW 12147-2021 电网智能业务终端接入规范
- 仁爱英语单词默写本(全六册)英译汉
- 公园广场绿地文化设施维修改造工程施工部署及进度计划
- 塑料件缺陷汇总
评论
0/150
提交评论