2024届宁夏固原市西吉县数学八下期末学业质量监测试题含解析_第1页
2024届宁夏固原市西吉县数学八下期末学业质量监测试题含解析_第2页
2024届宁夏固原市西吉县数学八下期末学业质量监测试题含解析_第3页
2024届宁夏固原市西吉县数学八下期末学业质量监测试题含解析_第4页
2024届宁夏固原市西吉县数学八下期末学业质量监测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届宁夏固原市西吉县数学八下期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图①,,点在线段上,且满足.如图②,以图①中的,长为边建构矩形,以长为边建构正方形,则矩形的面积为()A. B. C. D.2.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1,2,3 B.4,6,8 C.6,8,10 D.5,5,43.一次函数y=2x+1的图象不经过下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如图,已知▱ABCD的周长为20,∠ADC的平分线DE交AB于点E,若AD=4,则BE的长为()A.1 B.1.5 C.2 D.35.按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形

②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2

④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.46.下列命题中:①两直角边对应相等的两个直角三角形全等;②两锐角对应相等的两个直角三角形全等;③斜边和一直角边对应相等的两个直角三角形全等;④一锐角和斜边对应相等的两个直角三角形全等;⑤一锐角和一边对应相等的两个直角三角形全等.其中正确的个数有()A.2个 B.3个 C.4个 D.5个7.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是()A.1 B.3 C.4 D.58.式子①,②,③,④中,是分式的有()A.①② B.③④ C.①③ D.①②③④9.如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形;把正方形边长按原法延长一倍得到正方形;以此进行下去,则正方形的面积为A. B. C. D.10.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A.cm B.2cm C.3cm D.4cm11.下列说法正确的是()A.了解全国中学生最喜爱哪位歌手,适合全面调查.B.甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S甲2=1,S乙2=0.1,则甲麦种产量比较稳.C.某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D.一组数据:3,2,1,1,4,6的众数是1.12.如图,△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD于点D,若AB=12,AC=16,则MD等于()A.4 B.3 C.2 D.1二、填空题(每题4分,共24分)13.如图,直线与轴正半轴交于点,与轴交于点,将沿翻折,使点落在点处,点是线段的中点,射线交线段于点,若为直角三角形,则的值为__________.14.如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒时,点E在量角器上对应的读数是度.15.先化简:,再对a选一个你喜欢的值代入,求代数式的值.16.如图,矩形ABCD的对角线AC和BD相交于点O,∠ADB=30°,AB=4,则OC=_____.17.将圆心角为90°,面积为4π的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为_____________________.18.如图,圆柱体的高为8cm,底面周长为4cm,小蚂蚁在圆柱表面爬行,从A点到B点,路线如图所示,则最短路程为_____.三、解答题(共78分)19.(8分)在▱ABCD中,E、F是DB上的两点,且AE∥CF,若∠AEB=115∘,∠ADB=35∘20.(8分)如图,在▱ABCD中,点E、F在BD上,且BF=DE.(1)写出图中所有你认为全等的三角形;(2)延长AE交BC的延长线于G,延长CF交DA的延长线于H(请补全图形),证明四边形AGCH是平行四边形.21.(8分)在平面直角坐标系中,一次函数的图象与反比例函数(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).(1)求一次函数和反比例函数解析式.(2)若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.(3)根据图象,直接写出不等式的解集.22.(10分)如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.(1)求证:四边形EFGH是平行四边形;(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:当四边形ABCD变成平行四边形时,它的中点四边形是;当四边形ABCD变成矩形时,它的中点四边形是;当四边形ABCD变成菱形时,它的中点四边形是;当四边形ABCD变成正方形时,它的中点四边形是;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?23.(10分)某中学举行春季长跑比赛活动,小明从起点学校西门出发,途经市博物馆后按原路返还,沿比赛路线跑回终点学校西门.设小明离开起点的路程s(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到市博物馆的平均速度是0.3千米/分钟,用时35分钟根据图象提供的信息,解答下列问题:(1)求图中的值,并求出所在直线方程;(2)组委会在距离起点2.1千米处设立一个拍摄点,小明从第一次过点到第二次经过点所用的时间为68分钟①求所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?24.(10分)解方程:.25.(12分)如图所示,在中,,,,点从点出发沿方向以每秒2个单位长度的速度向点匀速运动,同时点从点出发沿方向以每秒1个单位长度的速度向点匀速运动,当其中一点到达终点时,另一个点也随之停止运动.设点、运动的时间是秒,过点作于点,连接、.(1)求证:;(2)四边形能够成为菱形吗?若能,求出的值;若不能,请说明理由;(3)当________时,为直角三角形.26.如图,一次函数的图象与,轴分别交于,两点,点与点关于轴对称.动点,分别在线段,上(点与点,不重合),且满足.(1)求点,的坐标及线段的长度;(2)当点在什么位置时,,说明理由;(3)当为等腰三角形时,求点的坐标.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

利用黄金比进行计算即可.【题目详解】解:由得,

AC=AB=×2=-1,BC=AB=×2=3-,

因为四边形CBDE为正方形,所以EC=BC,

AE=AC-CE=AC-BC=(-1)-(3-)=2-4,

矩形AEDF的面积:AE•DE=(2-4)×(3-)=10-1.

故选C.【题目点拨】本题考查黄金分割的意义,熟练利用黄金比计算是解题的关键.2、C【解题分析】

判断是否为直角三角形,只要验证较短两边长的平方和等于最长边的平方即可.【题目详解】A、12+22=5≠32,故不能组成直角三角形,错误;B、42+62≠82,故不能组成直角三角形,错误;C、62+82=102,故能组成直角三角形,正确;D、52+42≠52,故不能组成直角三角形,错误.故选:C.【题目点拨】本题主要考查勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.3、D【解题分析】

先根据一次函数y=2x+1中k=2,b=1判断出函数图象经过的象限,进而可得出结论.【题目详解】∵,根据一次函数的图像即可判断函数所经过一、二、三象限,不经过第四象限,故选D.考点:一次函数的图象.4、C【解题分析】

只要证明AD=AE=4,AB=CD=6即可解决问题.【题目详解】∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC=4,AB=CD=6,∴∠AED=∠CDE,∵DE平分∠ADC,∴∠ADE=∠EDC,∴∠ADE=∠AED,∴AD=AE=4,∴EB=AB﹣AE=6﹣4=1.故选:C.【题目点拨】此题考查了平行四边形的性质,等腰三角形的判定等知识,熟练掌握平行四边形的性质是解本题的关键.5、C【解题分析】

根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【题目详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.【题目点拨】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.6、C【解题分析】

根据全等三角形的判定定理逐项分析,作出判断即可.【题目详解】解:①两直角边对应相等,两直角相等,所以根据SAS可以判定两直角边对应相等的两个直角三角形全等.故①正确;②两锐角对应相等的两个直角三角形不一定全等,因为对应边不一定相等.故②错误;③斜边和一直角边对应相等的两个直角三角形,可以根据HL判定它们全等.故③正确;④一锐角和斜边对应相等的两个直角三角形,可以根据AAS判定它们全等.故④正确;⑤一锐角和一边对应相等的两个直角三角形,可以根据AAS或ASA判定它们全等.故⑤正确.综上所述,正确的说法有4个.故选:C.【题目点拨】本题考查了直角三角形全等的判定.直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.7、D【解题分析】

根据二次函数的图象与性质即可求出答案.【题目详解】解:①由抛物线的对称轴可知:,∴,由抛物线与轴的交点可知:,∴,∴,故①正确;②抛物线与轴只有一个交点,∴,∴,故②正确;③令,∴,∵,∴,∴,∴,∵,∴,故③正确;④由图象可知:令,即的解为,∴的根为,故④正确;⑤∵,∴,故⑤正确;故选D.【题目点拨】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.8、C【解题分析】

式子①,②,③,④中,是分式的有,故选C.9、B【解题分析】

根据三角形的面积公式,可知每一次延长一倍后,得到的一个直角三角形的面积和延长前的正方形的面积相等,即每一次延长一倍后,得到的图形是延长前的正方形的面积的5倍,从而解答.【题目详解】解:如图,已知小正方形ABCD的面积为1,则把它的各边延长一倍后,的面积,新正方形的面积是,从而正方形的面积为,以此进行下去,则正方形的面积为.故选:B.【题目点拨】此题考查了正方形的性质和三角形的面积公式,能够从图形中发现规律,利用规律解决问题.10、C【解题分析】

根据在直角三角形中,30度角所对直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值.【题目详解】∵ED⊥AB,∠A=30°,∴AE=2ED.∵AE=6cm,∴ED=3cm.∵∠ACB=90°,BE平分∠ABC,∴ED=CE,∴CE=3cm.故选C.【题目点拨】本题考查了含30°角的直角三角形,用到的知识点是在直角三角形中,30度角所对的直角边等于斜边的一半和角平分线的基本性质,关键是求出ED=CE.11、D【解题分析】

根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断.【题目详解】A、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用抽样调查的调查方式,故本选项错误;、甲乙两种麦种连续3年的平均亩产量的方差为:,,因方差越小越稳定,则乙麦种产量比较稳,故本选项错误;、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,故本选项错误;、.一组数据:3,2,1,1,4,6的众数是1,故本选项正确;.故选.【题目点拨】本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念和求解方法是解题关键.12、C【解题分析】

延长BD交AC于H,根据等腰三角形的性质得到BD=DH,AH=AB=12,根据三角形中位线定理计算即可.【题目详解】延长BD交AC于H,∵AD平分∠BAC,BD⊥AD,∴BD=DH,AH=AB=12,∴HC=AC﹣AH=4,∵M是BC中点,BD=DH,∴MD=12CH=2故选C.【题目点拨】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二、填空题(每题4分,共24分)13、-1【解题分析】

根据一次函数解析式可得B点坐标为(0,),所以得出OB=,再由为直角三角形得出∠ADE为直角,结合是直角三角形斜边的中点进一步得出∠OBD=∠B0D=45°,∠DOA=∠DAO=45°,所以△AOB为等腰直角三角形,所以OA长度为,进而得出A点坐标,将其代入解析式即可得出k的值.【题目详解】由题意得:B点坐标为(0,),∴OB=,∵在直角三角形AOB中,点是线段的中点,∴OD=BD=AD,又∵为直角三角形,∴∠OBD=∠B0D=45°,∠DOA=∠DAO=45°,∴△AOB为等腰直角三角形,∴OA=OB=,∴A点坐标为(,0),∴,解得k=-1.故答案为:-1.【题目点拨】本题主要考查了一次函数与三角形性质的综合运用,熟练掌握相关概念是解题关键.14、144【解题分析】

连接OE,∵∠ACB=90°,∴A,B,C在以点O为圆心,AB为直径的圆上,∴点E,A,B,C共圆,∵∠ACE=3°×24=72°,∴∠AOE=2∠ACE=144°,∴点E在量角器上对应的读数是:144°,故答案为144.15、;3【解题分析】

原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将a=3代入计算即可求出值.【题目详解】原式.∵且∴当a=3时,原式=【题目点拨】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16、1【解题分析】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,∠BAD=90°,∵∠ADB=30°,∴AC=BD=2AB=8,∴OC=AC=1.故答案为1.点睛:此题考查了矩形的性质、含30°角的直角三角形的性质.熟练掌握矩形的性质,注意掌握数形结合思想的应用.17、1【解题分析】

设扇形的半径为R,则=4π,解得R=4,设圆锥的底面半径为r,根据题意得=4π,解得r=1,即圆锥的底面半径为1.18、10cm【解题分析】

将圆柱沿过点A和点B的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于个底面周长,从而求出解题中的AC,连接AB,根据两点之间线段最短可得小蚂蚁爬行的最短路程为此时AB的长,然后根据勾股定理即可求出结论.【题目详解】解:将圆柱沿过点A和点B的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于个底面周长,如下图所示:AC=1.5×4=6cm,连接AB,根据两点之间线段最短,∴小蚂蚁爬行的最短路程为此时AB的长∵圆柱体的高为8cm,∴BC=8cm在Rt△ABC中,AB=cm故答案为:10cm.【题目点拨】此题考查的是利用勾股定理求最短路径问题,将圆柱的侧面展开,根据两点之间线段最短即可找出最短路径,然后利用勾股定理求值是解决此题的关键.三、解答题(共78分)19、80°【解题分析】

可证明△BCF≌△DAE,则∠BCF=∠DAE,根据三角形外角的性质可得出∠DAE的度数,从而得出∠BCF的度数.【题目详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CBF=∠ADE,∵AE∥CF,∴∠CFB=∠AED,∴△BCF≌△DAE,∴∠BCF=∠DAE,∵∠AEB=115°,∠ADB=35°,∴∠AEB=∠DAE+∠ADB,∴∠DAE=∠AEB-∠ADB=115°-35°=80°【题目点拨】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,外角的性质.20、(1)△ABE≌△CDF;△AED≌△CFB;△ABD≌△CDB;(2)详见解析【解题分析】

(1)因为ABCD是平行四边形,AD∥BC,因此∠ADE=∠CBF,又知DE=BF,D=BC那么构成了三角形ADE和CBF全等的条件(SAS)因此△AED≌△CFB.同理可得出△ABE≌△CDF,△ABD≌△CDB.(2)要证明四边形AGCH是个平行四边形,已知的条件有AB∥CD,只要证得AG∥CH即可得出上述结论.那么就需要证明∠AEB=∠DFC,也就是证明△ABE≌△CDF,根据AB∥CD.∴∠ABD=∠CDB.这两个三角形中已知的条件就有AB=CD,BE=DF(BE=DF+EF=DE+EF=DF),又由上面得出的对应角相等,那么两三角形就全等了(SAS).【题目详解】(1)解:△ABE≌△CDF;△AED≌△CFB;△ABD≌△CDB;(2)证明:在△ADE和△CBF中,AD=CB,∠ADE=∠CBF,DE=BF,∴△ADE≌△CBF,∴∠AED=∠CFB.∵∠FEG=∠AED=∠CFB=∠EFH,∴AG‖HC,而且,AH‖GC,∴四边形AGCH是平行四边形【题目点拨】本题考查了全等三角形的判定,平行四边形的性质和判定等知识点,本题中公共全等三角形来得出线段和角相等是解题的关键.21、(1)y=﹣x+,y=;(2)12;(3)x<﹣2或0<x<4.【解题分析】

(1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求△ABF的面积;(3)直接根据图象可得.【题目详解】(1)∵一次函数y=﹣x+b的图象与反比例函数y=(k≠0)图象交于A(﹣3,2)、B两点,∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6∴b=,k=﹣6∴一次函数解析式y=﹣,反比例函数解析式y=.(2)根据题意得:,解得:,∴S△ABF=×4×(4+2)=12(3)由图象可得:x<﹣2或0<x<4【题目点拨】本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键.22、(1)相等;(2)垂直;(3)见解析.【解题分析】

(1)连接BD.利用三角形中位线定理推出所得四边形对边平行且相等,故为平行四边形;(2)连接AC、BD.根据三角形的中位线定理,可以得到所得四边形的两组对边分别和原四边形的对角线平行,且分别等于原四边形的对角线的一半,再根据矩形、菱形、正方形的判定方法进行判定即可(3)由(2)可知,中点四边形的形状是由原四边形的对角线的关系决定的.【题目详解】(1)证明:连接BD.∵E、H分别是AB、AD的中点,∴EH是△ABD的中位线.∴EH=BD,EH∥BD.同理得FG=BD,FG∥BD.∴EH=FG,EH∥FG.∴四边形EFGH是平行四边形.(2)连接AC、BD.根据三角形的中位线定理,可以得到所得四边形的两组对边分别和原四边形的对角线平行,且分别等于原四边形的对角线的一半.若顺次连接对角线相等的四边形各边中点,则所得的四边形的四条边都相等,故所得四边形为菱形;若顺次连接对角线互相垂直的四边形各边中点,则所得的四边形的四个角都是直角,故所得四边形为矩形;若顺次连接对角线相等且互相垂直的四边形各边中点,则综合上述两种情况,故所得的四边形为正方形;故答案为:平行四边形,菱形,矩形,正方形;(3)中点四边形的形状是由原四边形的对角线的关系决定的.【题目点拨】此题综合运用了三角形的中位线定理和特殊四边形的判定定理.熟记结论:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线相等的四边形各边中点所得四边形是菱形;顺次连接对角线垂直的四边形各边中点所得四边形是矩形;顺次连接对角线相等且互相垂直的四边形各边中点所得四边形是正方形.23、(1);(2)①;②85分钟【解题分析】

(1)根据路程=速度×时间,再把A点的值代入即可解决问题.(2)①先求出A、B两点坐标即可解决问题.②令s=0,求出x的值即可解决问题.【题目详解】解:(1)∵从起点到市博物馆的平均速度是0.3千米/分钟,用时35分钟,∴千米.∴,设直线的解析式为:,把代入,得,解得,,∴直线的解析式为:;(2)①∵直线解析式为,∴当时,,解得,∵小明从第一次经过C点到第二次经过C点所用的时间为68分钟,∴小明从起点到第二次经过C点所用的时间是,分钟,∴直线经过,,设直线解析式,∴,,解得,,∴直线解析式为.②小明跑完赛程用的时间即为直线与轴交点的横坐标,∴当时,,解得,∴小明跑完赛程用时85分钟.【题目点拨】此题考查一次函数综合题,解题关键在于列出方程.24、【解题分析】分析:观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,最后检验.解:方程两边同乘以,得:化简得:,解得.经检验,是原方程的根.∴原方程的解为.25、(1)详见解析;(2)能;(3)2或秒【解题分析】

(1)在中,,,由已知条件求证;(2)求得四边形为平行四边形,若使平行四边形为菱形则需要

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论