2024届云南省昆明市八校八年级数学第二学期期末统考模拟试题含解析_第1页
2024届云南省昆明市八校八年级数学第二学期期末统考模拟试题含解析_第2页
2024届云南省昆明市八校八年级数学第二学期期末统考模拟试题含解析_第3页
2024届云南省昆明市八校八年级数学第二学期期末统考模拟试题含解析_第4页
2024届云南省昆明市八校八年级数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省昆明市八校八年级数学第二学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如果,那么下列各式正确的是()A.a+5<b+5 B.5a<5b C.a﹣5<b﹣5 D.2.炎炎夏日,甲安装队为A小区安装88台空调,乙安装队为B小区安装80台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台,设乙队每天安装x台,根据题意,下面所列方程正确的是()A.88x=80x-2 B.883.矩形ABCD中AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,点D正好落在AB边上的F点.则AE的长是()A.3B.4C.5D.64.关于x的不等式2x-a≤-1的解集在数轴上表示如下,则a的取值范围是()A.a≤-1 B.a≤-2 C.a=1 D.a=-25.已知三角形的三边为2、3、4,该三角形的面积为()A. B. C. D.6.分式①,②,③,④中,最简分式有()A.1个 B.2个 C.3个 D.4个7.矩形的对角线一定具有的性质是()A.互相垂直 B.互相垂直且相等C.相等 D.互相垂直平分8.下列四个三角形,与左图中的三角形相似的是()A. B. C. D.9.为了了解某校初三年级学生的运算能力,随机抽取了名学生进行测试,将所得成绩(单位:分)整理后,列出下表:分组频率本次测试这名学生成绩良好(大于或等于分为良好)的人数是()A. B. C. D.10.关于的不等式组恰好有四个整数解,那么的取值范围是()A. B. C. D.11.某校八年级甲、乙两班学生在一学期里的多次检测中,其数学成绩的平均分相等,但两班成绩的方差不等,那么能够正确评价他们的数学学习情况的是()A.学一样B.成绩虽然一样,但方差大的班里学生学习潜力大C.虽然平均成绩一样,但方差小的班学习成绩稳定D.方差较小的班学习成绩不稳定,忽高忽低12.若a>b,则下列各式不成立的是()A.a﹣1>b﹣2 B.5a>5b C.﹣a>﹣b D.a﹣b>0二、填空题(每题4分,共24分)13.如图1,在菱形中,,点在的延长线上,在的角平分线上取一点(含端点),连结并过点作所在直线的垂线,垂足为.设线段的长为,的长为,关于的函数图象及有关数据如图2所示,点为图象的端点,则时,_____,_____.14.若二次根式有意义,则的取值范围为_____.15.关于x的方程a2x+x=1的解是__.16.一次函数y=kx+2(k≠0)的图象与x轴交于点A(n,0),当n>0时,k的取值范围是_____.17.平行四边形ABCD的对角线AC、BD相交于点O,AB=6,BC=8,若△AOB是等腰三角形,则平行四边形ABCD的面积等于_______________________.18.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是_____.三、解答题(共78分)19.(8分)小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16分钟回到家中.设小明出发第t分钟的速度为v米/分,离家的距离为s米.v与t之间的部分图象、s与t之间的部分图象分别如图1与图2(图象没画完整,其中图中的空心圈表示不包含这一点),则当小明离家600米时,所用的时间是()分钟.A.4.5 B.8.25 C.4.5或8.25 D.4.5或8.520.(8分)已知:如图,在△ABC中,∠ACB=90°,点D是斜边AB的中点,DE∥BC,且CE=CD.(1)求证:∠B=∠DEC;(2)求证:四边形ADCE是菱形.21.(8分)小辉为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图1.小辉发现每月每户的用水量在之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变.根据小军绘制的图表和发现的信息,完成下列问题:(1),小明调查了户居民,并补全图1;(1)每月每户用水量的中位数落在之间,众数落在之间;(3)如果小明所在的小区有1100户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数多少?22.(10分)如图,在平面直角坐标系中,矩形的顶点在轴的正半轴上,顶点在轴的正半轴上,是边上的一点,,.反比例函数在第一象限内的图像经过点,交于点,.(1)求这个反比例函数的表达式,(2)动点在矩形内,且满足.①若点在这个反比例函数的图像上,求点的坐标,②若点是平面内一点,使得以、、、为顶点的四边形是菱形,求点的坐标.23.(10分)某同学上学期的数学历次测验成绩如下表所示:测验类别平时测验期中测验期末测验第1次第2次第3次成绩100106106105110(1)该同学上学期5次测验成绩的众数为,中位数为;(2)该同学上学期数学平时成绩的平均数为;(3)该同学上学期的总成绩是将平时测验的平均成绩、期中测验成绩、期末测验成绩按照2:3:5的比例计算所得,求该同学上学期数学学科的总评成绩(结果保留整数)。24.(10分)瑞安市文化创意实践学校是一所负责全市中小学生素质教育综合实践活动的公益类事业单位,学校目前可开出:创意手工创意表演、科技制作(创客)、文化传承、户外拓展等5个类别20多个项目课程.(1)学校3月份接待学生1000人,5月份增长到2560人,求该学校接待学生人数的平均月增长率是多少?(2)在参加“创意手工”体验课程后,小明发动本校同学将制作的作品义卖募捐.当作品卖出的单价是2元时,每天义卖的数量是150件;当作品的单价每涨高1元时,每天义卖的数量将减少10件.问:在作品单价尽可能便宜的前提下,当单价定为多少元时,义卖所得的金额为600元?25.(12分)如图,在四边形ABCD中,AB∥CD,AC.BD相交于点O,且O是BD的中点(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,AB=8,求四边形ABCD的周长.26.A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡,从A城运往C、D两乡运肥料的费用分别是每吨20元和25元,从B城运往C、D两乡运肥料的费用分别为每吨15元和24元,现在C乡需要肥料240吨,D乡需要肥料260吨,设A城运往C乡的肥料量为x吨,总运费为y元.(1)写出总运费y元关于x的之间的关系式;(2)当总费用为10200元,求从A、B城分别调运C、D两乡各多少吨?(3)怎样调运化肥,可使总运费最少?最少运费是多少?

参考答案一、选择题(每题4分,共48分)1、D【解题分析】

根据不等式的性质逐一进行分析判断即可得.【题目详解】∵,∴a+5>b+5,故A选项错误,5a>5b,故B选项错误,a-5>b-5,故C选项错误,,故D选项正确,故选D.【题目点拨】本题考查了不等式的性质,熟练掌握不等式的基本性质是解题的关键.2、D【解题分析】

关键描述语为:“两队同时开工且恰好同时完工”,那么等量关系为:甲队所用时间=乙队所用时间.【题目详解】乙队用的天数为:80x,甲队用的天数为:88x+2.则所列方程为:故选D.【题目点拨】本题考查了由实际问题抽象出分式方程,找到相应的等量关系是解决问题的关键,注意工作时间=工作总量÷工作效率.3、A【解题分析】

由矩形的性质和折叠的性质可得CF=DC=10,DE=EF,由勾股定理可求BF的长,即可得AF=4,在Rt△AEF中,由勾股定理即可求得AE的长.【题目详解】∵四边形ABCD是矩形,∴AB=CD=10,BC=AD=8,∠A=∠D=∠B=90°,∵折叠,∴CD=CF=10,EF=DE,在Rt△BCF中,BF==6,∴AF=AB-BF=10-6=4,在Rt△AEF中,AE2+AF2=EF2,∴AE2+16=(8-AE)2,∴AE=3,故选A.【题目点拨】本题考查了翻折变换,矩形的性质,勾股定理,熟练掌握折叠的性质是本题的关键.4、C【解题分析】

先根据在数轴上表示不等式解集的方法求出不等式的解集,再列出关于a的方程,求出a的取值范围即可.【题目详解】解:由数轴上表示不等式解集的方法可知,此不等式的解集为x≤0,解不等式2x-a≤-1得,x≤a-12,即a-12=0,解得a=1.故选【题目点拨】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.5、D【解题分析】

如图所示:过点B作BD⊥AC于点D,利用勾股定理得出BD的长,进而利用三角形面积求法得出答案.【题目详解】如图所示:过点B作BD⊥AC于点D,

设BD=x,CD=y,

则AD=4-y,在Rt△BDC中,x2+y2=32,

在Rt△ABD中,x2+(4-y)2=22,

故9+16-8y=4,解得:y=,

∴x2+()2=9,解得:x=故三角形的面积为:故选:D.【题目点拨】本题考查勾股定理的应用,根据题意得出三角形的高的值是解题关键.6、B【解题分析】

利用约分可对各分式进行判断.【题目详解】①是最简分式;②,故不是最简分式;③,故不是最简分式;④是最简分式;所以,最简分式有2个,故选:B.【题目点拨】本题考查了最简分式:一个分式的分子与分母没有公因式时,叫最简分式.7、C【解题分析】

根据矩形的性质即可判断.【题目详解】因为矩形的对角线相等且互相平分,所以选项C正确,故选C.【题目点拨】本题考查矩形的性质,解题的关键是记住矩形的性质.8、B【解题分析】

设单位正方形的边长为1,求出各边的长,再根据各选项的边长是否成比例关系即可判断.【题目详解】设单位正方形的边长为1,给出的三角形三边长分别为2,4,2.A、三角形三边分别是2,,3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边,2,,与给出的三角形的各边成比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,,4,与给出的三角形的各边不成正比例,故D选项错误.故选:B.【题目点拨】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.9、D【解题分析】

先根据表格得到成绩良好的频率,再用100×频率即可得解.【题目详解】解:由题意可知成绩良好的频率为0.3+0.4=0.7,则这名学生成绩良好的人数是100×0.7=70(人).故选D.【题目点拨】本题主要考查频率与频数,解此题的关键在于熟练掌握其知识点,在题中准确找到需要的信息.10、C【解题分析】

可先用m表示出不等式组的解集,再根据恰有四个整数解可得到关于m的不等式,可求得m的取值范围.【题目详解】解:在中,解不等式①可得x>m,解不等式②可得x≤3,由题意可知原不等式组有解,∴原不等式组的解集为m<x≤3,∵该不等式组恰好有四个整数解,∴整数解为0,1,2,3,∴-1≤m<0,故选C.【题目点拨】本题主要考查解不等式组,求得不等式组的解集是解题的关键,注意恰有四个整数解的应用.11、C【解题分析】分析:由题意知数学成绩的平均分相等,但他们成绩的方差不等,数学的平均成绩一样,说明甲和乙的平均水平基本持平,方差较小的同学,数学成绩比较稳定,选择学生参加考试时,还要选方差较小的学生.解答:解:∵数学成绩的平均分相等,但他们成绩的方差不等,数学的平均成绩一样,说明甲和乙的平均水平基本持平,方差较小的同学,数学成绩比较稳定,故选C.12、C【解题分析】

根据不等式的性质,可得答案.【题目详解】解:A、a−1>a−2>b−2,故A成立,故A不符合题意;B、5a>5b,故B成立,故B不符合题意;C、两边都乘,不等号的方向改变,﹣a﹣b,故C不成立,故C符合题意,D、两边都减b,a﹣b>0,故D成立,故D不符合题意;故选C.【题目点拨】本题考查了不等式的性质,熟记不等式的性质是解题关键.二、填空题(每题4分,共24分)13、8【解题分析】

先根据为图象端点,得到Q此时与B点重合,故得到AB=4,再根据,根据,得到,从而得到,再代入即可求出x,过点作于.设,根据,利用三角函数表示出,,故在中,利用得到方程即可求出m的值.【题目详解】解∵为图象端点,∴与重合,∴.∵四边形为菱形,,∴,此时,∵=∴,即.∴当时,,即;过点作于.设.∵,∴,.在中,∴,即,∴,即.故答案为:8;.【题目点拨】此题主要考查菱形的动点问题,解题的关键是熟知菱形的性质、勾股定理及解直角三角形的方法.14、.【解题分析】

根据二次根式有意义的条件:二次根号下被开方数≥0,即可解答.【题目详解】根据题意得,,解得.故答案为:.【题目点拨】本题考查二次根式有意义的条件,熟练掌握二次根号下被开方数≥0是解题关键.15、.【解题分析】

方程合并后,将x系数化为1,即可求出解.【题目详解】解:方程合并得:(a2+1)x=1,解得:x=,故答案为:.16、k<1【解题分析】分析:根据题意可以用含k的式子表示n,从而可以得出k的取值范围.详解:∵一次函数y=kx+2(k≠1)的图象与x轴交于点A(n,1),∴n=﹣,∴当n>1时,﹣>1,解得,k<1,故答案为k<1.点睛:本题考查一次函数图象与系数的关系,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.17、1或2【解题分析】

分三种情形分别讨论求解即可解决问题;【题目详解】情形1:如图当OA=OB时,∵四边形ABCD是平行四边形,∴AC=2OA,BD=2OB,∴AC=BD,∴四边形ABCD是矩形,∴四边形ABCD的面积=1.情形2:当AB=AO=OC=6时,作AH⊥BC于H.设HC=x.∵AH2=AB2-BH2=AC2-CH2,∴62-(x-8)2=122-x2,∴x=,∴AH=,∴四边形ABCD的面积=8×=2.情形3:当AB=OB时,四边形ABCD的面积与情形2相同.综上所述,四边形ABCD的面积为1或2.故答案为1或2.【题目点拨】本题考查平行四边形的性质、等腰三角形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.18、(0,)【解题分析】

作点A关于y轴的对称点A',连接A'D,此时△ADE的周长最小值为AD+DA'的长;E点坐标即为直线A'D与y轴的交点;【题目详解】解:作点A关于y轴的对称点A',连接A'D,此时△ADE的周长最小值为AD+DA'的长;∵A的坐标为(﹣4,5),D是OB的中点,∴D(﹣2,0),由对称可知A'(4,5),设A'D的直线解析式为y=kx+b,∴,∴,∴,∴E(0,);故答案为(0,);【题目点拨】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE的最短距离转化为线段A'D的长是解题的关键.三、解答题(共78分)19、D【解题分析】

根据函数图象中的数据可以求得小明从家去和返回时两种情况下离家600米对应的时间,本题得以解决.【题目详解】解:由图2可得,当2<t<5时,小明的速度为:(680-200)÷(5-2)=160m/min,设当小明离家600米时,所用的时间是t分钟,则200+160(t-2)=600时,t=4.5,80(16-t)=600时,t=8.5,故选:D.【题目点拨】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.20、(1)证明见解析;(2)证明见解析.【解题分析】

(1)根据直角三角形斜边上的中线等于斜边的一半,得到DB=DC,从而∠B=∠DCB,由DE∥BC,得到∠DCB=∠CDE,由CE=CD,得到∠CDE=∠DEC,利用等量代换,得到∠B=∠DEC;(2)先利用一组对边平行且相等的四边形是平行四边形,证明四边形ADCE是平行四边形,再由CD=CE,证明平行四边形ADCE是菱形.【题目详解】(1)证明:在△ABC中,∵∠ACB=90°,点D是斜边AB的中点,∴CD=DB,∴∠B=∠DCB,∵DE∥BC,∴∠DCB=∠CDE,∵CD=CE,∴∠CDE=∠CED,∴∠B=∠CED.(2)证明:∵DE∥BC,∴∠ADE=∠B,∵∠B=∠DEC,∴∠ADE=∠DEC,∴AD∥EC,∵EC=CD=AD,∴四边形ADCE是平行四边形,∵CD=CE,∴四边形ADCE是菱形.故答案为:(1)证明见解析;(2)证明见解析.【题目点拨】本题考查了直角三角形的性质,菱形的判定.21、(1)110,84,补图见解析;(1),;(3)700户【解题分析】

(1)利用即可求出n的值,利用“对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变”的居民的数量除以相应的百分比即可求出调查的总数量,然后用总数量减去用水量在,的居民的数量,即可求出用水量在之间的居民的数量,即可补全图1;(1)根据中位数和众数的概念即可得出答案;(3)用总人数1100×样本中“视调价涨幅采取相应的用水方式改变”的居民所占的百分比即可得出答案.【题目详解】(1),调查的居民的总数为,用水量在之间的居民的数量为,补全的图1如图:(1)根据中位数的概念,因为共调查了84户居民,每月每户用水量的中位数为第41,41个数据的平均数,即中位数落在之间,由图可知,用水量在的数据最多,所以众数落在之间;(3)∵(户),∴估计“视调价涨幅采取相应的用水方式改变”的居民户数有700户.【题目点拨】本题主要考查扇形统计图和频数分布直方图,掌握中位数,众数的概念,用样本估计总体的方法是解题的关键.22、(1);(2)①;②【解题分析】

(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m−6,n),利用反比例函数图象上点的坐标特征可求出m的值,结合OC:CD=5:3可求出n值,再将m,n的值代入k=mn中即可求出反比例函数的表达式;(2)由三角形的面积公式、矩形的面积公式结合S△PAO=S四边形OABC可求出点P的纵坐标.①若点P在这个反比例函数的图象上,利用反比例函数图象上点的坐标特征可求出点P的坐标;②由点A,B的坐标及点P的纵坐标可得出AP≠BP,进而可得出AB不能为对角线,设点P的坐标为(t,2),分AP=AB和BP=AB两种情况考虑:(i)当AB=AP时,利用勾股定理可求出t值,进而可得出点P1的坐标,结合P1Q1的长可求出点Q1的坐标;(ii)当BP=AB时,利用勾股定理可求出t值,进而可得出点P2的坐标,结合P2Q2的长可求出点Q2的坐标.综上,此题得解.【题目详解】解:(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m−6,n).∵点D,E在反比例函数的图象上,∴k=mn=(m−6)n,∴m=1.∵OC:CD=5:3,∴n:(m−6)=5:3,∴n=5,∴k=mn=×1×5=15,∴反比例函数的表达式为y=;(2)∵S△PAO=S四边形OABC,∴OA•yP=OA•OC,∴yP=OC=2.①当y=2时,=2,解得:x=,∴若点P在这个反比例函数的图象上,点P的坐标为(,2).②由(1)可知:点A的坐标为(1,0),点B的坐标为(1,5),∵yP=2,yA+yB=5,∴yP≠,∴AP≠BP,∴AB不能为对角线.设点P的坐标为(t,2).分AP=AB和BP=AB两种情况考虑(如图所示):(i)当AB=AP时,(1−t)2+(2−0)2=52,解得:t1=6,t2=12(舍去),∴点P1的坐标为(6,2),又∵P1Q1=AB=5,∴点Q1的坐标为(6,1);(ii)当BP=AB时,(1−t)2+(5−1)2=52,解得:t3=1−2,t2=1+2(舍去),∴点P2的坐标为(1−2,2).又∵P2Q2=AB=5,∴点Q2的坐标为(1−2,−1).综上所述:点Q的坐标为(6,1)或(1−2,−1).【题目点拨】本题考查了反比例函数图象上点的坐标特征、三角形的面积、矩形的面积、菱形的性质以及勾股定理,解题的关键是:(1)利用反比例函数图象上点的坐标特征,求出点B的横纵坐标;(2)①由点P的纵坐标,利用反比例函数图象上点的坐标特征求出点P的坐标;②分AP=AB和BP=AB两种情况,利用勾股定理及菱形的性质求出点Q的坐标.23、(1)106,106;(2)104;(3)107分.【解题分析】分析:(1)根据中位数及众数的定义,即可求解;(2)根据平均数的计算公式计算即可;(3)用本学期的的数学平时测验的数学成绩×0.3+期中测验×0.3+期末测验×0.4,计算即可.详解:(1)数据排列为:100,105,106,106,110;所以中位数为106,众数为106.(2)平时数学平均成绩为:=104.(3)104×0.3+105×0.3+110×0.4=107分.点睛:此题主要考查了中位数、众数、平均数、算术平均数的计算,关键是理解中位数、众数、平均数、算术平均数的概念和公式.24、(1)该学校接待学生人数的增长率为60%;(2)单价定为5元.【解题分析】

(1)设平均月增长率为,根据题意得到一元二次方程即可求解;(2)设定价为元,求出可卖出的件数,根据义卖所得的金额为600元得到一元二次方程即可求解.【题目详解】解:(1)设平均月增长率为,则根据题意得,解得,(舍),∴该学校接待学生人数的增长率为60%.(2)设定价为元,此时可卖出件,∴可列方程,解得,.∵作品单价要尽可能便宜,∴单价定为5元.答:当单价定为5元时,义卖所得的金额为600元.【题目点拨】本题考查了一元二次方程的应用,关键在于明确数量与每件利润的表示方法.25、(1)详见解析;(2)32【解题分析】

(1)利用全等三角形的性质证明AB=CD即可解决问题.(2)证明四边形ABCD是菱形,即可求四边形ABCD的周长.【题目详解】解:(1)证明:∵AB//CD,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论