2024届上海市建平西学校八年级数学第二学期期末调研试题含解析_第1页
2024届上海市建平西学校八年级数学第二学期期末调研试题含解析_第2页
2024届上海市建平西学校八年级数学第二学期期末调研试题含解析_第3页
2024届上海市建平西学校八年级数学第二学期期末调研试题含解析_第4页
2024届上海市建平西学校八年级数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海市建平西学校八年级数学第二学期期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.已知,,则的值为()A.-2 B.1 C.-1 D.22.下列图形中既是中心对称图形,又是轴对称图形的是()A.正三角形 B.平行四边形 C.等腰梯形 D.正方形3.如果三条线段a、b、c满足a2=(c+b)(c﹣b),那么这三条线段组成的三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.不能确定4.如图,菱形ABCD中,点M是AD的中点,点P由点A出发,沿A→B→C→D作匀速运动,到达点D停止,则△APM的面积y与点P经过的路程x之间的函数关系的图象大致是()A. B.C. D.5.一次函数与的图像在同一坐标系中的图象大致是()A. B.C. D.6.若的整数部分为x,小数部分为y,则的值是()A. B. C.1 D.37.已知四边形是平行四边形,下列结论中正确的个数有()①当时,它是菱形;②当时,它是菱形;③当时,它是矩形;④当时,它是正方形.A.4 B.3 C.2 D.18.如图,正方形中,为上一点,,交的延长线于点.若,,则的长为()A. B. C. D.9.如图,长方形ABCD中,BE、CE分别平分∠ABC和∠DCB,点E在AD上,①△ABE≌△DCE;②△ABE和△DCE都是等腰直角三角形;③AE=DE;④△BCE是等边三角形,以上结论正确的有()A.1个 B.2个 C.4个 D.3个10.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是()A.AF=AE B.△ABE≌△AGF C.EF= D.AF=EF11.A、B两点在一次函数图象上的位置如图所示,两点的坐标分别是,,下列结论正确的是A. B. C. D.12.电影院里的座位按“×排×号”编排,小明的座位简记为(12,6),小菲的座位简记为(12,12),则小明与小菲坐的位置为()A.同一排 B.前后同一条直线上 C.中间隔六个人 D.前后隔六排二、填空题(每题4分,共24分)13.已知,,则=______。14.在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是_______.15.要使有意义,则x的取值范围是_________.16.分解因式:9a﹣a3=_____.17.如图甲,在所给方格纸中,每个小正方形的边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在格点处)请将图乙中的▱ABCD分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.18.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于(________)三、解答题(共78分)19.(8分)某中学举办“网络安全知识答题竞赛”,七、八年级根据初赛成绩各选出5名选手组成代表队参加决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)七年级a85bS七年级2八年级85c100160(1)根据图示填空:a=,b=,c=;(2)结合两队成绩的平均数和中位数进行分析,哪个代表队的决赛成绩较好?(3)计算七年级代表队决赛成绩的方差S七年级2,并判断哪一个代表队选手成绩较为稳定.20.(8分)某直销公司现有名推销员,月份每个人完成销售额(单位:万元),数据如下:整理上面的数据得到如下统计表:销售额人数(1)统计表中的;;(2)销售额的平均数是;众数是;中位数是.(3)月起,公司为了提高推销员的积极性,将采取绩效工资制度:规定一个基本销售额,在基本销售额内,按抽成;从公司低成本与员工愿意接受两个层面考虑,你认为基本销售额定位多少万元?请说明理由.21.(8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度人数所占百分比非常满意1210%满意54m比较满意n40%不满意65%根据图表信息,解答下列问题:(1)本次调查的总人数为______,表中m的值为_______;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.22.(10分)已知:,,求的值.23.(10分)春节前小王花1200元从农贸市场购进批发价分别为每箱30元与50元的A,B两种水果进行销售,并分别以每箱35元与60元的价格出售,设购进A水果x箱,B水果y箱.(1)让小王将水果全部售出共赚了215元,则小王共购进A、B水果各多少箱?(2)若要求购进A水果的数量不得少于B水果的数量,则应该如何分配购进A,B水果的数量并全部售出才能获得最大利润,此时最大利润是多少?24.(10分)如图,四边形是矩形,点的坐标为(0,6),点的坐标为(4,0),点从点出发,沿以每秒2个单位长度的速度向点出发,同时点从点出发,沿以每秒3个单位长度的速度向点运动,当点与点重合时,点、同时停止运动.设运动时间为秒.(1)当时,请直接写出的面积为_____________;(2)当与相似时,求的值;(3)当反比例函数的图象经过点、两点时,①求的值;②点在轴上,点在反比例函数的图象上,若以点、、、为顶点的四边形是平行四边形,请直接写出所有满足条件的的坐标.25.(12分)已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.求证:四边形AGCH是平行四边形.26.如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,(1)求∠EAF的度数;(2)在图①中,连结BD分别交AE、AF于点M、N,将△ADN绕点A顺时针旋转90°至△ABH位置,连结MH,得到图②.求证:MN2=MB2+ND2;(3)在图②中,若AG=12,BM=,直接写出MN的值.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】

首先将所求式子进行因式分解,然后代入即可得解.【题目详解】将,,代入,得上式=,故选:D.【题目点拨】此题主要考查利用完全平方式进行因式分解求值,熟练掌握,即可解题.2、D【解题分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A.正三角形不是中心对称图形,是轴对称图形,故本选项错误;B.平行四边形是中心对称图形,不是轴对称图形,故本选项错误;C.等腰梯形不是中心对称图形,是轴对称图形,故本选项错误;D.正方形是中心对称图形,也是轴对称图形,故本选项正确.故选D.3、A【解题分析】

∵a2=(c+b)(cb),∴a2=c2﹣b2,即a2+b2=c2,∴这三条线段组成的三角形是直角三角形.故选A.【题目点拨】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.4、D【解题分析】

根据菱形的性质及三角形面积的计算公式可知当点P在BC边上运动时△APM的高不度面积不变,结合选项马上可得出答案为D【题目详解】解:当点P在AB上运动时,可知△APM的面积只与高有关,而高与运动路程AP有关,是一次函数关系;当点P在BC上时,△APM的高不会发生变化,所以此时△APM的面积不变;当点P在CD上运动时,△APM的面积在不断的变小,并且它与运动的路程是一次函数关系

综上所述故选:D.【题目点拨】本题考查了动点问题的函数图象:利用点运动的几何性质列出有关的函数关系式,然后根据函数关系式画出函数图象,注意自变量的取值范围.5、D【解题分析】

按照当k、b为正数或负数逐次选择即可.【题目详解】解:当k>0,b>0时,过一二三象限,也过一二三象限,各选项都不符合;当k<0,b<0时,过二三四象限,也过二三四象限,各选项都不符合;当k>0,b<0,过一三四象限,过一二四象限,图中D符合条件,故选:D.【题目点拨】本题考查的是一次函数的图象,解题的关键是熟知k、b在图象上代表的意义.6、C【解题分析】因为,所以的整数部分为1,小数部分为,即x=1,,所以.7、B【解题分析】

根据特殊平行四边形的判定即可判定.【题目详解】四边形是平行四边形,①当时,邻边相等,故为菱形,正确;②当时,对角线垂直,是菱形,正确;③当时,有一个角为直径,故为矩形,正确;④当时,对角线相等,故为矩形,故错误,由此选B.【题目点拨】此题主要考查特殊平行四边形的判定,解题的关键是熟知特殊平行四边形的判定定理.8、D【解题分析】

先根据题意得出△ABM∽△MCG,故可得出CG的长,再求出DG的长,根据△MCG∽△EDG即可得出结论.【题目详解】四边形ABCD是正方形,AB=12,BM=5,.,,,,,,,,即,解得,,,,,,即,解得.故选D.【题目点拨】本题主要考查相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.9、D【解题分析】

根据矩形性质得出∠A=∠D=90°,AB=CD,AD∥BC,推出∠AEB=∠EBC,∠DEC=∠ECB,求出∠AEB=∠ABE,∠DCE=∠DEC,推出AB=AE,DE=DC,推出AE=DE,根据SAS推出△ABE≌△DCE,推出BE=CE即可.【题目详解】∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=CD,AD∥BC,∴∠AEB=∠EBC,∠DEC=∠ECB,∵BE、CE分别平分∠ABC和∠DCB,∴∠ABE=∠EBC,∠DCE=∠ECB,∴∠AEB=∠ABE,∠DCE=∠DEC,∴AB=AE,DE=DC,∴AE=DE,∴△ABE和△DCE都是等腰直角三角形,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴BE=CE,∴①②③都正确,故选D.【题目点拨】此题考查全等三角形的判定与性质,等腰直角三角形,等边三角形的判定,解题关键在于掌握各判定定理.10、D【解题分析】试题分析:∵AD∥BC,∴∠AFE=∠FEC,∵∠AEF=∠FEC,∴∠AFE=∠AEF,∴AF=AE,∴选项A正确;∵ABCD是矩形,∴AB=CD,∠B=∠C=90°,∵AG=DC,∠G=∠C,∴∠B=∠G=90°,AB=AG,∵AE=AF,∴△ABE≌△AGF,∴选项B正确;设BE=x,则CE=BC﹣BE=8﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=8﹣x,在Rt△ABE中,,即,解得x=3,∴AE=8﹣3=5,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=5,过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF﹣AH=5﹣3=2,在Rt△EFH中,EF=,∴选项C正确;由已知条件无法确定AF和EF的关系,故选D.考点:翻折变换(折叠问题).11、B【解题分析】

根据函数的图象可知:y随x的增大而增大,y+b<y,x+a<x得出b<0,a<0,即可推出答案.【题目详解】∵根据函数的图象可知:y随x的增大而增大,∴y+b<y,x+a<x,∴b<0,a<0,∴选项A.C.

D都不对,只有选项B正确,故选B.12、A【解题分析】

∵(12,6)表示12排6号,(12,12)表示12排12号,

∴小明(12,6)与小菲(12,12)应坐的位置在同一排,中间隔5人.

故选A.【题目点拨】考查学生利用类比点的坐标解决实际问题的能力和阅读理解能力.二、填空题(每题4分,共24分)13、60【解题分析】

=2ab(a+b),将a+b=3,ab=10,整体带入即可.【题目详解】=2ab(a+b)=2×3×10=60.【题目点拨】本题主要考查利用提公因式法分解因式,整体带入是解决本题的关键.14、8.【解题分析】

直接利用菱形的性质结合勾股定理得出菱形的另一条对角线的长,进而利用菱形面积求法得出答案.【题目详解】如图所示:∵在菱形ABCD中,∠BAD=60°,其所对的对角线长为4,∴可得AD=AB,故△ABD是等边三角形,则AB=AD=4,故BO=DO=2,则AO=,故AC=4,则菱形ABCD的面积是:×4×4=8.故答案为:8.【题目点拨】此题主要考查了菱形的性质以及勾股定理,正确得出菱形的另一条对角线的长是解题关键.15、.【解题分析】

根据二次根式有意义的条件即可解答.【题目详解】∵有意义,∴2x+5≥0,解得,.故答案为:.【题目点拨】本题考查了二次根式有意义的条件,熟知二次根式有意义被开方数为非负数是解决问题的关键.16、a(3+a)(3﹣a).【解题分析】

先提公因式,再用平方差公式,可得答案.【题目详解】原式=a(9﹣a2)=a(3+a)(3﹣a).故答案为:a(3+a)(3﹣a).【题目点拨】本题考查了因式分解,利用提公因式与平方差公式是解题的关键.17、详见解析【解题分析】

直接利用网格结合全等三角形的判定方法得出答案.【题目详解】解:如图所示:③与④全等;②与⑥全等;⑤与①全等.【题目点拨】此题主要考查了平行四边形的性质以及全等三角形的判定,正确应用网格是解题关键.18、-1【解题分析】

先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【题目详解】∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣1.故答案为:-1.【题目点拨】本题考查了函数值,解题的关键是掌握函数值的计算方法.三、解答题(共78分)19、(1)85,85,80;(2)七年级决赛成绩较好;(3)七年级代表队选手成绩比较稳定.【解题分析】

(1)根据平均数、中位数、众数的概念分析计算即可;(2)根据图表可知七八年级的平均分相同,因此结合两个年级的中位数来判断即可;(3)根据方差的计算公式来计算即可,然后根据“方差越小就越稳定”的特点来判断哪个队成绩稳定即可.【题目详解】解:(1)七年级的平均分a=,众数b=85,八年级选手的成绩是:70,75,80,100,100,故中位数c=80;故答案为85,85,80;(2)由表格可知七年级与八年级的平均分相同,七年级的中位数高,故七年级决赛成绩较好;(3)S2七年级=(分2),S2七年级<S2八年级∴七年级代表队选手成绩比较稳定.【题目点拨】本题主要考查了平均数、中位数、众数、方差的概念及统计意义,熟练掌握其概念是解题的关键.20、(1),;(2)平均数:,众数:,中位数:;(3)基本销售额定为万元,理由详见解析.【解题分析】

(1)根据题干中的数据可得出a,b的值;(2)按照平均数,中位数,众数的定义分别求得;(3)根据平均数,中位数,众数的意义回答.【题目详解】解:(1),;(2)平均数=(10×2+13×3+15+17×7+18+22×4+23×3+24×3+26×4+28×2)÷30=20(万元);出现次数最多的是17万元,所以众数是17(万元);把销售额按从小到大顺序排列后,第15,16位都是22万元,所以中位数是22(万元).故答案为:;;.(3)基本销售额定为万元.理由:作为数据的代表,本组数据的平均数、众数、中位数三个量作为基本额都具有合理性.其中中位数为万最大,选择中位数对公司最有利,付出成本最低,对员工来说,这只是个中等水平,可以接受,所以选择中位数作为基本额.【题目点拨】考查学生对平均数、中位数、众数的计算及运用其进行分析的能力.21、(1)120;45%;(2)补图见解析;(3)平均每天得到约1980人的肯定.【解题分析】

(1)非常满意的人数÷所占百分比计算即可得;用满意的人数÷总人数即可得m(2)计算出比较满意的n的值,然后补全条形图即可(3)每天接待的游客×(非常满意+满意)的百分比即可【题目详解】(1)12÷10%=120;54÷120×100%=45%(2)比较满意:120×40%=48(人);补全条形统计图如图.(3)3600×(45%+10%)=1980(人).答:该景区服务工作平均每天得到约1980人的肯定.【题目点拨】统计图有关的计算是本题的考点,熟练掌握其特点并正确计算是解题的关键.22、3【解题分析】

直接将代入求值比较麻烦,因此,可将原式化为含有的式子,再计算出的值代入即可.【题目详解】解:∵,,∴,.∴原式.【题目点拨】本题考查了乘法公式,灵活应用乘法公式将整式变形是解题的关键.23、(1)小王共购进A水果25箱,B水果9箱;(2)应购进A水果15箱、B水果15箱能够获得最大利润,最大利润为225元.【解题分析】

(1)根据题意中的相等关系“A种水果x箱的批发价+B种水果y箱的批发价=1200元,A种水果赚的钱+B种水果赚的钱=215元”列方程组求解即可;(2)先用x表示y,列出利润w的关系式,再根据题意求出x的取值范围,然后根据一次函数的性质求出w的最大值及购进方案.【题目详解】解:(1)根据题意,得,即,解得.答:小王共购进A水果25箱,B水果9箱.(2)设获得的利润为w元,根据题意得,∵,∴,∵A水果的数量不得少于B水果的数量,∴,即,解得.∴,∵,∴w随x的增大而减小,∴当x=15时,w最大=225,此时.即应购进A水果15箱、B水果15箱能够获得最大利润,最大利润为225元.【题目点拨】本题考查了二元一次方程组的应用、一元一次不等式的解法和一次函数的性质,正确理解题意列出方程组、灵活应用一次函数的性质是解此题的关键.24、(1)3;(2)或;(3)①;②【解题分析】

(1)BP=4-2t,BQ=3t,将t=1代入再利用三角形面积公式求得即可.(2)当时分两种①,②情况讨论求解.(3)①将,代入求解可得k.②根据平行四边形的性质,P、Q两点横纵坐标的差等于M、N横纵坐标的差,构造方程求解【题目详解】解:(1)BP=4-2t,BQ=3t,当t=1时,三角形面积为=3.(2)①当时,则∴∴∴∴②当时,则∴∴∴,(不合题意,舍去)综上,或(3)①∵,∴∴∴②根据①问k=12,t=1,P(2,6),Q(4,3)设M点坐标为(x,0),N(a,)根据平行四边形的性质,P、Q两点横纵坐标的差等于M、N横纵坐标的差,构造方程求解,x-4=2-a,3=-6,解得a=,x=.所以M点坐标为【题目点拨】本题主要考查了三角形面积公式,相似三角形定理,反比例函数综合运用,注意掌握数形结合,分类讨论思想.25、证明见解析.【解题分析】法1:由平行四边形对边平行,且CF与AD垂直,得到CF与BC垂直,根据AE与BC垂直,得到AE与CF平行,得到一对内错角相等,利用等角的补角相等得到∠AGB=∠DHC,根据AB与CD平行,得到一对内错角相等,再由AB=CD,利用AAS得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到AG=CH,利用一组对边平行且相等的四边形为平行四边形即可得证;法2:连接AC,与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论