2024届黑龙江省大庆市林甸县八年级数学第二学期期末联考模拟试题含解析_第1页
2024届黑龙江省大庆市林甸县八年级数学第二学期期末联考模拟试题含解析_第2页
2024届黑龙江省大庆市林甸县八年级数学第二学期期末联考模拟试题含解析_第3页
2024届黑龙江省大庆市林甸县八年级数学第二学期期末联考模拟试题含解析_第4页
2024届黑龙江省大庆市林甸县八年级数学第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省大庆市林甸县八年级数学第二学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.以下列长度(单位:cm)为边长的三角形是直角三角形的是()A.3,4,5 B.1,2,3 C.5,7,9 D.6,10,122.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.格点N C.格点P D.格点Q3.在圆的周长公式中,常量是()A.2 B. C. D.4.“分数”与“分式”有许多共同点,我们在学习“分式”时,常常对比“分数”的相关知识进行学习,这体现的数学思想方法是()A.分类 B.类比 C.方程 D.数形结合5.如图,已知AB=DC,下列所给的条件不能证明△ABC≌△DCB的是()A.∠A=∠D=90° B.∠ABC=∠DCB C.∠ACB=∠DBC D.AC=BD6.如图,直线L与双曲线交于A、C两点,将直线L绕点O顺时针旋转a度角(0°<a≤45°),与双曲线交于B、D两点,则四边形ABCD形状一定是()A.平行四边形 B.菱形 C.矩形 D.任意四边形7.如图,正方形中,,点在边上,且,将沿对折至,延长交边于点,连接、.则下列结论:①≌;②;③∥;④.其中正确的是()A.①② B.①②③ C.①②④ D.①②③④8.如图,点A1、B1、C1分别为△ABC的边BC、CA、AB的中点,点A2、B2、C2分别为△A1B1C1的边B1C1、C1A1、A1B1的中点,若△ABC的面积为1,则△A2B2C2的面积为()A. B. C. D.9.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的面积比为()A.1:2 B.1:3 C.1:4 D.1:1610.已知一次函数y=(2m+1)x﹣m﹣1的图象不经过第三象限,则m的取值范围是()A.m>﹣1 B.m<﹣1 C.m≥﹣1 D.m≤﹣1二、填空题(每小题3分,共24分)11.□ABCD中,已知:∠A=38°,则∠B=_____度,∠C=____度,∠D=_____度.12.如图,一架15m长的梯子AB斜靠在一竖直的墙OA上,这时梯子的顶端A离地面距离OA为12m,如果梯子顶端A沿墙下滑3m至C点,那么梯子底端B向外移至D点,则BD的长为___m.13.一次函数y=﹣x,函数值y随x的增大而_____.14.已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=___________cm.15.如图,一次函数的图象交轴于点,交轴于点,点在线段上,过点分别作轴于点,轴于点.若矩形的面积为,则点的坐标为______.16.如图,在平行四边形ABCD中,以顶点A为圆心,AD长为半径,在AB边上截取AE=AD,用尺规作图法作出∠BAD的角平分线AG,若AD=5,DE=6,则AG的长是_________________.17.一组数据x1,x2,…,xn的平均数是2,方差为1,则3x1,3x2,…,3xn,的方差是_____.18.如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.三、解答题(共66分)19.(10分)如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE,CE.(1)求证:△ABE≌△ACE;(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.20.(6分)计算:①|-|+|-2|-|-1|②+-+(-1)1.21.(6分)先化简,再求值:),其中.22.(8分)感知:如图(1),已知正方形ABCD和等腰直角△EBF,点E在正方形BC边上,点F在AB边的延长线上,∠EBF=90°,连结AE、CF.易证:∠AEB=∠CFB(不需要证明).探究:如图(2),已知正方形ABCD和等腰直角△EBF,点E在正方形ABCD内部,点F在正方形ABCD外部,∠EBF=90°,连结AE、CF.求证:∠AEB=∠CFB应用:如图(3),在(2)的条件下,当A、E、F三点共线时,连结CE,若AE=1,EF=2,则CE=______.23.(8分)如图,△ABC是等边三角形,BD是中线,P是直线BC上一点.(1)若CP=CD,求证:△DBP是等腰三角形;(2)在图①中建立以△ABC的边BC的中点为原点,BC所在直线为x轴,BC边上的高所在直线为y轴的平面直角坐标系,如图②,已知等边△ABC的边长为2,AO=,在x轴上是否存在除点P以外的点Q,使△BDQ是等腰三角形?如果存在,请求出Q点的坐标;如果不存在,请说明由.24.(8分)如图,在平面直角坐标系中,直线交轴于点,交轴于点.点在轴的负半轴上,且的面积为8,直线和直线相交于点.(1)求直线的解析式;(2)在线段上找一点,使得,线段与相交于点.①求点的坐标;②点在轴上,且,直接写出的长为.25.(10分)如图,ABCD是平行四边形,延长AB到E,延长CD到F,使BE=DF,连接EF分别交BC、AD于点G、H,求证:EG=FH26.(10分)(问题原型)在图①的矩形中,点、、、分别在、、、上,若,则称四边形为矩形的反射四边形;(操作与探索)在图②,图③的矩形中,,,点、分别在、边的格点上,试利用正方形网格分别在图②、图③上作矩形的反射四边形;(发现与应用)由前面的操作可以发现,一个矩形有不同的反射四边形,且这些反射四边形的周长都相等.若在图①的矩形中,,,则其反射四边形的周长为______.

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】

利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【题目详解】A.因为3+4=5,所以三条线段能组成直角三角形;B.因为1+2≠3,所以三条线段不能组成直角三角形;C.因为5+7≠9,所以三条线段不能组成直角三角形;D.因为6+10≠12,所以三条线段不能组成直角三角形;故选:A.【题目点拨】此题考查勾股定理的逆定理,难度不大2、B【解题分析】

此题可根据旋转前后对应点到旋转中心的距离相等来判断所求的旋转中心.【题目详解】解:如图,连接N和两个三角形的对应点;发现两个三角形的对应点到点N的距离相等,因此格点N就是所求的旋转中心;故选B.【题目点拨】熟练掌握旋转的性质是确定旋转中心的关键所在.3、C【解题分析】

根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.【题目详解】周长公式中,常量为,故选C.【题目点拨】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4、B【解题分析】

根据分式和分数的基本性质,成立的条件等相关知识,分析求解.【题目详解】“分数”与“分式”有许多共同点,我们在学习“分式”时,常常对比“分数”的相关知识进行学习,比如分数的基本性质,分数成立的条件等,这体现的数学思想方法是类比故选:B【题目点拨】本题的解题关键是掌握分数和分式的基本性质和概念.5、C【解题分析】解:AB=DC,BC为△ABC和△DCB的公共边,A、∠A=∠D=90°满足“HL”,能证明△ABC≌△DCB;B、∠ABC=∠DCB满足“边角边”,能证明△ABC≌△DCB;C、∠ACB=∠DBC满足“边边角”,不能证明△ABC≌△DCB;D、AC=BD满足“边边边”,能证明△ABC≌△DCB.故选C.6、A【解题分析】试题分析:根据反比例函数的性质可得OA=OC,OB=OD,再根据平行四边形的判定方法即可作出判断.解:∵反比例函数图象关于原点对称∴OA=OC,OB=OD∴四边形ABCD是平行四边形.考点:反比例函数的性质,平行四边形的判定点评:解题的关键是熟练掌握反比例函数图象关于原点对称,对角线互相平分的四边形是平行四边形.7、B【解题分析】分析:根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面积比较即可.详解:①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;②正确.因为:EF=DE=CD=2,设BG=FG=x,则CG=6-x.在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,解得x=1.所以BG=1=6-1=GC;③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°-∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.过F作FH⊥DC,∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴,EF=DE=2,GF=1,∴EG=5,∴△EFH∽△EGC,∴相似比为:,∴S△FGC=S△GCE-S△FEC=×1×4-×4×(×1)=.而S△AFE=S△ADE=,∴S△FGC≠S△AFE故答案为①②③.点睛:本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想与方程思想的应用.8、D【解题分析】

由于A1、B1、C1分别是△ABC的边BC、CA、AB的中点,就可以得出△A1B1C1∽△ABC,且相似比为,面积比为,就可求出△A1B1C1的面积=,同样的方法得出△A2B2C2的面积=.【题目详解】解:∵A1、B1、C1分别是△ABC的边BC、CA、AB的中点,∴A1B1、A1C1、B1C1是△ABC的中位线,∴△A1B1C1∽△ABC,且相似比为,∴S△A1B1C1:S△ABC=1:4,且S△ABC=1,∴S△A1B1C1=.∵A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,∴△A1B1C1∽△A2B2C2且相似比为,∴△A2B2C2的面积=×S△A1B1C1=.故选:D.【题目点拨】本题考查了三角形中位线定理的运用,相似三角形的判定与性质的运用.根据中位线定理得出三角形相似是解决此题的关键.9、D【解题分析】

直接根据相似三角形的性质即可得出结论.【题目详解】解:∵△ABC∽△DEF,且△ABC与△DEF相似比为1:4,∴△ABC与△DEF的面积比=(14)2=1:16故答案为:D【题目点拨】本题考查的是相似三角形的性质,熟知相似三角形的面积的比等于相似比的平方是解答此题的关键.10、D【解题分析】

由一次函数y=(2m+1)x﹣m﹣1的图象不经过第三象限,则2m+1<0,且﹣m﹣1≥0,解两个不等式即可得到m的取值范围.【题目详解】∵一次函数y=(2m+1)x﹣m﹣1的图象不经过第三象限,∴2m+1<0,且﹣m﹣1≥0,由2m+1<0,得:m;由﹣m﹣1≥0,得:m≤﹣1.所以m的取值范围是m≤﹣1.故选D.【题目点拨】本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.二、填空题(每小题3分,共24分)11、14238142【解题分析】

根据平行四边形对角相等,邻角互补,进而得出∠B、∠C、∠D的度数.【题目详解】∵平行四边形ABCD中,∴∠B=∠D,∠A=∠C=38°,∠A+∠B=180°,∴∠B=142°,∴∠D=∠B=142°.故答案为:142,38,142【题目点拨】本题考查了平行四边形的性质,掌握平行四边形对角相等,邻角互补是解题的关键.12、1【解题分析】

先根据勾股定理求出OB的长,再在Rt△COD中求出OD的长,进而可得出结论.【题目详解】解:在Rt△ABO中,∵AB=15m,AO=12m,∴OB==9m.同理,在Rt△COD中,DO==12m,∴BD=OD﹣OB=12﹣9=1(m).故答案是:1.【题目点拨】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.13、减小【解题分析】

根据其图象沿横轴的正方向的增减趋势,判断其增减性.【题目详解】解:因为一次函数y=中,k=所以函数值y随x的增大而减小.故答案是:减小.【题目点拨】考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.14、6【解题分析】根据三角形的中位线性质可得,15、(,1)或(,3)【解题分析】

由点P在一次函数y=﹣2x+4的图象上,可设P(x,﹣2x+4),由矩形OCPD的面积是可求解.【题目详解】解:∵点P在一次函数y=﹣2x+4的图象上,∴设P(x,﹣2x+4),∴x(﹣2x+4)=,解得:x1=,x2=,∴P(,1)或(,3).故答案是:(,1)或(,3)【题目点拨】本题运用了一次函数的点的特征的知识点,关键是运用了数形结合的数学思想.16、1【解题分析】

首先证明线段AG与线段DE互相垂直平分,利用勾股定理求出AH即可解决问题;【题目详解】解:分别以D和E作为圆心,以略长于EH的长度为半径作弧,交于点F,连接AF并延长,交CD于G,则AG即为∠BAD的角平分线,设AG交BD于H,则AG垂直平分线线段DE(等腰三角形三线合一),∴DH=EH=3,∵四边形ABCD是平行四边形,∴CD∥AB,∴∠AGD=∠GAB,∵∠DAG=∠GAB,∴∠DAG=∠DGA,∴DA=DG,∵DE⊥AG,∴AH=GH(等腰三角形三线合一),在Rt△ADH中,AH=,∴AG=2AH=1,故答案为1.【题目点拨】本题考查作图-复杂作图、平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题;17、1【解题分析】

根据x1,x2,x3,…xn的方差是1,可得出3x1,3x2,3x3,…,3xn的方差是1×32即可.【题目详解】∵数据:x1,x2,x3,…,xn的平均数是2,方差是1,∴数据3x1,3x2,3x3,…,3xn的方差是1×1=1.故答案为:1.【题目点拨】本题考查了方差,若在原来数据前乘以同一个数,方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.18、2【解题分析】

如图,过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1∵点B在双曲线上,且AB∥x轴,∴四边形BEOC的面积为3∴四边形ABCD为矩形,则它的面积为3-1=2三、解答题(共66分)19、(1)证明见解析(2)当AE=2AD(或AD=DE或DE=AE)时,四边形ABEC是菱形【解题分析】

(1)证明:∵AB=AC点D为BC的中点∴∠BAE=∠CAE又∵AB=AC,AE=AE∴△ABE≌△ACE(SAS)(2)当AE=2AD(或AD=DE或DE=AE)时,四边形ABEC是菱形∵AE=2AD,∴AD=DE又点D为BC中点,∴BD=CD∴四边形ABEC为平行四形∵AB=AC∴四边形ABEC为菱形20、①3-2;②4.5.【解题分析】

(1)原式利用绝对值的代数意义化简,计算即可得到结果.(2)本题涉及三次根式、二次根式化简、平方3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.根据实数运算法则即可得到结果.【题目详解】解:①|-|+|-2|-|-1|=-+2--+1=3-2;②+-+(-1)1=2+2-0.5+1=4.5.【题目点拨】(1)本题考查了实数运算,熟练掌握运算法则是解题的关键.(2)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握三次根式、二次根式、平方等考点的运算.21、,.【解题分析】试题分析:先通分,然后进行四则运算,最后将a的值代入计算即可.试题解析:原式===,当时,原式===.考点:分式的化简求值.22、感知:见解析;探究:见解析;应用:.【解题分析】

感知:先判断出∠ABC=∠CBF=90°,AB=BC,进而判断出BE=BF,得出△ABE≌△CBF(SAS)即可得出结论;探究:先判断出∠ABE=∠CBF,进而得出△ABE≌△CBF(SAS),即可得出结论;应用:先求出CF=1,再判断出∠CFE=90°,利用勾股定理即可得出结论.【题目详解】解:感知:∵四边形ABCD是正方形,∴∠ABC=∠CBF=90°,AB=BC,∵△BEF是等腰直角三角形,∴BE=BF,∴△ABE≌△CBF(SAS),∴∠AEB=∠CFB;探究:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵△BEF是等腰直角三角形,∴BE=BF,∠EBF=90°=∠ABC,∴∠ABE=∠CBF,∴△ABE≌△CBF(SAS),∴∠AEB=∠CFB;应用:由(2)知,△ABE≌△CBF,∠BFC=∠BEA,∴CF=AE=1,∵△BEF是等腰直角三角形,∴∠BFE=∠BEF=45°,∴∠AEB=135°,∴∠BFC=135°,∴∠CFE=∠BFC-∠BFE=90°,在Rt△CFE中,CF=1,EF=2,根据勾股定理得,,故答案为:.【题目点拨】此题是四边形综合题,主要考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理,判断出△ABE≌△CBF(SAS),是解本题的关键.23、(1)见解析(2)P1(--1,0),P2(0,0)P3(+1,0)【解题分析】

(1)根据等边三角形的性质即可证明;(2)分三种情况讨论:①若点P在x轴负半轴上,②若点P在x轴上,③若点P在x轴正半轴上,分别进行求解即可.【题目详解】(1)证明:∵△ABC是等边三角形∴∠ABC=∠ACB=60°∵BD是中线∴∠DBC=30°∵CP=CD∴∠CPD=∠CDP又∵∠ACB=60°∴∠CPD=30°∴∠CPD=∠DBC∴DB=DP即△DBP是等腰三角形.(2)解:在x轴上存在除点P以外的点Q,使△BDQ是等腰三角形①若点P在x轴负半轴上,且BP=BD∵BD=∴BP=∴OP=+1∴点P1(--1,0)②若点P在x轴上,且BP=PD∵∠PBD=∠PDB=30°∴∠DPC=60°又∠PCD=60°∴PC=DC=1而OC=1∴OP=0∴点P2(0,0)③若点P在x轴正半轴上,且BP=BD∴BP=而OB=1∴OP=+1∴点P3(+1,0)24、(1)直线的解析式为;(2)①,,②满足条件的的值为8或.【解题分析】

(1)求出B,C两点坐标,利用待定系数法即可解决问题.(2)①连接AD,利用全等三角形的性质,求出直线DF的解析式,构建方程组确定交点E坐标即可.②如图1中,将线段FD绕点F顺时针旋转90°得到FG,作DE⊥y轴于E,GH⊥y轴于F.根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论