辽宁省大连高新园区四校联考2024届八年级数学第二学期期末学业水平测试模拟试题含解析_第1页
辽宁省大连高新园区四校联考2024届八年级数学第二学期期末学业水平测试模拟试题含解析_第2页
辽宁省大连高新园区四校联考2024届八年级数学第二学期期末学业水平测试模拟试题含解析_第3页
辽宁省大连高新园区四校联考2024届八年级数学第二学期期末学业水平测试模拟试题含解析_第4页
辽宁省大连高新园区四校联考2024届八年级数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省大连高新园区四校联考2024届八年级数学第二学期期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.已知一次函数y=kx+2,y随x的增大而增大,则该函数的图象一定经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限2.如图,点A坐标为(3,0),B是y轴正半轴上一点,AB=5,则点B的坐标为()A.(4,0) B.(0,4) C.(0,5) D.(0,)3.如图,在四边形ABCD中,AD=BC,点E、F、G、H分别是AB、BD、CD、AC的中点,则对四边形EFGH表述最确切的是()A.四边形EFGH是矩形 B.四边形EFGH是菱形C.四边形EFGH是正方形 D.四边形EFGH是平行四边形4.下列函数关系式:①y=-2x,②y=−,③y=-2x2,④y=2,⑤y=2x-1.其中是一次函数的是()A.①⑤ B.①④⑤ C.②⑤ D.②④⑤5.一组数据8,7,6,7,6,5,4,5,8,6的众数是()A.8 B.7 C.6 D.56.如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2) B.(,2) C.(3﹣,2) D.(﹣2,2)7.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小8.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是()月用电量(度)2530405060户数12421A.极差是3 B.众数是4 C.中位数40 D.平均数是20.59.在菱形中,,边上的高为()A. B. C. D.10.如图,在菱形ABCD中,点E,F,G,H分别是边AB,BC,CD和DA的中点,连接EF,FG,GH和HE,若EH=2EF=2,则菱形ABCD的边长为(

)A.

B.2

C.2

D.411.若分式的值为0,则x的值是()A.2 B.-2 C.2或-2 D.012.一种微粒的半径是4×10-5米,用小数表示为(

)A.0.000004米 B.0.000004米 C.0.00004米 D.0.0004米二、填空题(每题4分,共24分)13.平行四边形的一个内角平分线将对边分成3和5两个部分,则该平行四边形的周长是_____.14.一次跳远中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有____人.15.如图,BD是矩形ABCD的一条对角线,点E,F分别是BD,DC的中点.若AB=4,BC=3,则AE+EF的长为_____.16.已知一组数据10,10,x,8的众数与它的平均数相等,则这组数的中位数是____.17.一种盛饮料的圆柱形杯子(如图),测得它的内部底面半径为2.5cm,高为12cm,吸管放进杯子里,杯口外面至少要露出5.2cm,则吸管的长度至少为_______cm.18.如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,且AB=10cm,则△DEB的周长是_____cm.三、解答题(共78分)19.(8分)某学校开展课外体育活动,决定开设A:篮球、B:乒乓球、C:武术、D:跑步四种活动项目为了解学生最喜欢哪一种活动项目每人只选取一种随机抽取了m名学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题:______;在扇形统计图中“乒乓球”所对应扇形的圆心角的度数为______;请把图的条形统计图补充完整;若该校有学生1200人,请你估计该校最喜欢武术的学生人数约是多少?20.(8分)如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.21.(8分)2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾按照“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”的分类标准.没有垃圾分类和未指定投放到指定垃圾桶内等会被罚款和行政处罚.垃圾分类制度即将在全国范围内实施,很多商家推出售卖垃圾分类桶,某商店经销垃圾分类桶.现有如下信息:信息1:一个垃圾分类桶的售价比进价高12元;信息2:卖3个垃圾分类桶的费用可进货该垃圾分类桶4个;请根据以上信息,解答下列问题:(1)该商品的进价和售价各多少元?(2)商店平均每天卖出垃圾分类桶16个.经调查发现,若销售单价每降低1元,每天可多售出2个.为了使每天获取更大的利润,垃圾分类桶的售价为多少元时,商店每天获取的利润最大?每天的最大利润是多少?22.(10分)为了了解某校初中各年级学生每天的平均睡眠时间(单位:,精确到,抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数的值为_____,所抽查的学生人数为______.(2)求出平均睡眠时间为8小时的人数,并补全条形统计图.(3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1800名,请你估计睡眠不足(少于8小时)的学生数.23.(10分)矩形ABCO中,O(0,0),C(0,3),A(a,0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO得到矩形AFED.(1)如图1,当点D落在边BC上时,求BD的长(用a的式子表示);(2)如图2,当a=3时,矩形AFED的对角线AE交矩形ABCO的边BC于点G,连结CE,若△CGE是等腰三角形,求直线BE的解析式;(3)如图3,矩形ABCO的对称中心为点P,当P,B关于AD对称时,求出a的值,此时在x轴、y轴上是否分别存在M,N使得四边形EFMN为平行四边形,若存在直接写出M,N坐标,不存在说明理由.24.(10分)已知,正方形ABCD中,点E为BC边上任意一点(点E不与B,C重合),点F在线段AE上,过点F的直线,分别交AB、CD于点M、N.(1)如图,求证:;(2)如图,当点F为AE中点时,连接正方形的对角线BD,MN与BD交于点G,连接BF,求证:;(3)如图,在(2)的条件下,若,,求BM的长度.25.(12分)如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.26.如图,在平面直角坐标系中,直线:

分别与x轴、y轴交于点B、C,且与直线:交于点A.分别求出点A、B、C的坐标;直接写出关于x的不等式的解集;若D是线段OA上的点,且的面积为12,求直线CD的函数表达式.

参考答案一、选择题(每题4分,共48分)1、A【解题分析】试题分析:y随x的增大而增大,则k>0,则函数y=kx+1一定经过一、二、三象限.考点:一次函数的性质.2、B【解题分析】分析:根据勾股定理解答本题即可.详解:因为点A坐标为(3,0),B是y轴正半轴上一点,AB=5,

所以OB==4,

所以点B的坐标为(0,4),

故选B.点睛:本题考查了两点之间的距离,解本题的关键是根据勾股定理解答.3、B【解题分析】

根据三角形中位线定理得到EH=BC,EH∥BC,得到四边形EFGH是平行四边形,根据菱形的判定定理解答即可.【题目详解】解:∵点E、H分别是AB、AC的中点,∴EH=BC,EH∥BC,同理,EF=AD,EF∥AD,HG=AD,HG∥AD,∴EF=HG,EF∥HD,∴四边形EFGH是平行四边形,∵AD=BC,∴EF=EH,∴平行四边形EFGH是菱形,故选B.【题目点拨】本题考查的是中点四边形的概念和性质、掌握三角形中位线定理、菱形的判定定理是解题的关键.4、A【解题分析】

根据一次函数的定义条件进行逐一分析即可.【题目详解】解:①y=-2x是一次函数;②y=−自变量次数不为1,故不是一次函数;③y=-2x2自变量次数不为1,故不是一次函数;④y=2是常函数;⑤y=2x-1是一次函数.所以一次函数是①⑤.故选:A.【题目点拨】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.5、C【解题分析】

根据众数的含义:在一组数据中出现次数最多的数叫做这组数据的众数.【题目详解】在这组数据中6出现3次,次数最多,所以众数为6,故选:C.【题目点拨】本题考查众数的定义,学生们熟练掌握即可解答.6、A【解题分析】

依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=-1,可得G(-1,2).【题目详解】如图,过点A作AH⊥x轴于H,AG与y轴交于点M,∵▱AOBC的顶点O(0,0),A(-1,2),∴AH=2,HO=1,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴MG=-1,∴G(-1,2),故选A.【题目点拨】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.7、C【解题分析】

分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.【题目详解】选项A,由平均数的计算方法可得甲、乙得分的平均数都是8,此选项正确;选项B,甲得分次数最多是8分,即众数为8,乙得分最多的是9分,即众数为9故此选项正确;选项C,甲得分从小到大排列为:7、8、8、8、9,可得甲的中位数是8分;乙得分从小到大排列为:6、7、9、9、9,可得乙的中位数是9分;此选项错误;选项D,×[(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=×2=0.4,=×[(7﹣8)2+(9﹣8)2+(6﹣8)2+(9﹣8)2+(9﹣8)2]=×8=1.6,所以,故D正确;故答案选C.考点:算术平均数;中位数;众数;方差.8、C【解题分析】

极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【题目详解】解:A、这组数据的极差是:60-25=35,故本选项错误;

B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;

C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;

D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;

故选:C.【题目点拨】本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.9、C【解题分析】

先求出对角线BD长,利用菱形的面积等于对角线乘积的一半和底乘以高求解BC边上的高.【题目详解】解:设AC与BD交于点O,

∵四边形ABCD是菱形,

∴AO⊥BO,且AC=2AO,BD=2BO.

在Rt△AOB中利用勾股定理可得BO==1.

∴BD=2BO=2.

∴菱形的面积为BD×AC=×6×2=21.

设BC变上的高为h,则BC×h=21,即5h=21,h=1.2.

故选C.【题目点拨】本题考查菱形的性质,解题的关键是掌握菱形面积的两种计算方法.10、A【解题分析】

连接AC、BD交于O,根据菱形的性质得到AC⊥BD,OA=OC,OB=OD,根据三角形中位线定理、矩形的判定定理得到四边形EFGH是矩形,根据勾股定理计算即可.【题目详解】连接AC、BD交于O,

∵四边形ABCD是菱形,

∴AC⊥BD,OA=OC,OB=OD,

∵点E、F、G、H分别是边AB、BC、CD和DA的中点,∴EF=AC,EH=BD,EF∥AC,EH∥BD,∴四边形EFGH是平行四边形,EH⊥EF,∴四边形EFGH是矩形,∵EH=2EF=2,

∴OB=2OA=2,∴AB=.故选:A.【题目点拨】考查的是中点四边形,掌握菱形的性质、三角形中位线定理是解题的关键.11、A【解题分析】

分式的值为0,分子为0,也就是x-2=0,即x=2,分母不能为0,x+2≠0,即x≠-2,所以选A.【题目详解】根据题意x-2=0且x+2≠0,所以x=2,选A.【题目点拨】本题考查分式的性质,分式的值为0,分子为0且分母不能为0,据此作答.12、C【解题分析】

小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】4×10-5=0.00004故答案为:C【题目点拨】考查了科学计数法,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).二、填空题(每题4分,共24分)13、22或1.【解题分析】

根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,可以求解.【题目详解】∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当BE=3时,CE=5,AB=3,则周长为22;②当BE=5时,CE=3,AB=5,则周长为1,故答案为:22或1.【题目点拨】本题考查了平行四边形的性质,结合了等腰三角形的判定.注意有两种情况,要进行分类讨论.14、20【解题分析】

根据频率的计算公式即可得到答案.【题目详解】解:所以可得参加比赛的人数为20人.故答案为20.【题目点拨】本题主要考查频率的计算公式,这是数据统计的重点知识,必须掌握.15、1【解题分析】

先根据三角形中位线定理得到的长,再根据直角三角形斜边上中线的性质,即可得到的长,进而得出计算结果.【题目详解】解:∵点E,F分别是的中点,∴FE是△BCD的中位线,.又∵E是BD的中点,∴Rt△ABD中,,故答案为1.【题目点拨】本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半.16、10【解题分析】试题分析:由题意可知这组数据的众数为10,再根据平均数公式即可求得x的值,最后根据中位数的求解方法求解即可.解:由题意得这组数据的众数为10∵数据10,10,x,8的众数与它的平均数相等∴,解得∴这组数据为12,10,10,8∴这组数的中位数是10.考点:统计的应用点评:统计的应用是初中数学的重点,是中考必考题,熟练掌握各种统计量的计算方法是解题的关键.17、18.2【解题分析】

由于吸管、圆柱形杯内部底面直径与杯壁正好构成直角三角形,故可先利用勾股定理求出AC的长,进而可得出结论.【题目详解】解:如图;杯内的吸管部分长为AC,杯高AB=12cm,杯底直径BC=5cm;

Rt△ABC中,AB=12cm,BC=5cm;由勾股定理得:;故吸管的长度最少要:13+5.2=18.2(cm).故答案为:18.2.【题目点拨】本题考查勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.18、10【解题分析】试题分析:根据角平分线的性质可得:CD=DE,△ACD和△AED全等,则AE=AC,根据AC=BC可知AE=BC,则△DEB的周长=DE+BD+BE=CD+BD+BE=BC+BE=AE+BE=AB=10cm.三、解答题(共78分)19、(1)50;(2)108°;(3)见解析;(4)1.【解题分析】

(1)由B项目人数及其所占百分比可得总人数m;(2)用360°乘以B项目对应百分比可得;(3)根据各项目人数之和为50求得A项目人数即可补全图形;(4)总人数乘以样本中C项目人数所占比例即可得.【题目详解】,故答案为50;在扇形统计图中“乒乓球”所对应扇形的圆心角的度数为,故答案为;项目人数为人,补全图形如下:估计该校最喜欢武术的学生人数约是人.【题目点拨】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20、证明见解析.【解题分析】

利用ASA即可得证;【题目详解】∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AB∥CD,∴∠BAE=∠DCF∴在△ABE和△CDF中,,∴△ABE≌△CDF,∴BE=DF.考点:1.平行四边形的性质;2.三角形全等的判定与性质.21、(1)进价为36元,售价为48元;(2)当售价为46元时,商店每天获利最大,最大利润为:200元.【解题分析】

(1)根据题意,设一个垃圾分类桶的进价为x元,则售价为(x+12)元,列出方程,解方程即可得到答案;(2)根据题意,可设每天获利为w,当垃圾分类桶的售价为y元时,每天获利w最大,然后列出方程,解出方程即可得到答案.【题目详解】解:(1)设一个垃圾分类桶的进价为x元,则售价为(x+12)元,则,解得:,∴售价为:36+12=48元.答:一个垃圾分类桶的进价为36元,售价为48元;(2)设每天获利为w,当一个垃圾分类桶的售价为y元时,每天获利最大,则,整理得:;∴当时,商店每天获利最大,最大利润为:200元.【题目点拨】该题以二次函数为载体,以二元一次方程组的应用、二次函数的性质及其应用为考查的核心构造而成;解题的关键是深入把握题意,准确找出命题中隐含的数量关系;灵活运用有关性质来分析、判断、解答.22、(1)45%,60人;(2)18人,条形统计图见解析;(3)众数7,平均数7.2;(4)1170人.【解题分析】

(1)用1减去每天的平均睡眠时间为6小时,8小时,9小时所占的百分比即可求出a的值,用每天的平均睡眠时间为6小时的人数除以其所占的百分比即可得到总人数;(2)用总人数乘以每天的平均睡眠时间为8小时所占的百分比即可求出睡眠时间为8小时的人数,用总人数乘以a的值即可求出睡眠时间为7小时的人数,然后即可补全条形统计图;(3)根据众数和平均数的定义计算即可;(4)先计算出睡眠时间少于8小时的人所占的百分比,然后用总人数1800乘以这个百分比即可得出答案.【题目详解】(1),所抽查的学生人数为(人);(2)平均睡眠时间为8小时的人数为(人),平均睡眠时间为7小时的人数为(人),条形统计图如下:(3)由扇形统计图可知,睡眠时间为7小时的人数最多,所以这部分学生的平均睡眠时间的众数为7,平均数为;(4)(人)【题目点拨】本题主要考查条形统计图和扇形统计图,掌握条形统计图和扇形统计图以及众数,平均数的求法是解题的关键.23、(1)BD=;(2)y=﹣x+6;(3)M(,0),N(0,)【解题分析】

(1)如图1,当点D落在边BC上时,BD2=AD2-AB2,即可求解;(2)分CG=EG、CE=GE、CE=CG三种情况分别求解;(3)①由点P为矩形ABCO的对称中心,得到求得直线PB的解析式为,得到直线AD的解析式为:,解方程即可得到结论;②根据①中的结论得到直线AD的解析式为,求得∠DAB=30°,连接AE,推出A,B,E三点共线,求得,设M(m,0),N(0,n),解方程组即可得到结论.【题目详解】(1)如图1,在矩形ABCO中,∠B=90°当点D落在边BC上时,BD2=AD2﹣AB2,∵C(0,3),A(a,0)∴AB=OC=3,AD=AO=a,∴BD=;(2)如图2,连结AC,∵a=3,∴OA=OC=3,∴矩形ABCO是正方形,∴∠BCA=45°,设∠ECG的度数为x,∴AE=AC,∴∠AEC=∠ACE=45°+x,①当CG=EG时,x=45°+x,解得x=0,不合题意,舍去;②当CE=GE时,如图2,∠ECG=∠EGC=x∵∠ECG+∠EGC+∠CEG=180°,∴x+x+(45°+x)=180°,解得x=45°,∴∠AEC=∠ACE=90°,不合题意,舍去;③当CE=CG时,∠CEG=∠CGE=45°+x,∵∠ECG+∠EGC+∠CEG=180°,∴x+(45°+x)+(45°+x)=180°,解得x=30°,∴∠AEC=∠ACE=75°,∠CAE=30°如图3,连结OB,交AC于点Q,过E作EH⊥AC于H,连结BE,∴EH=AE=AC,BQ=AC,∴EH=BQ,EH∥BQ且∠EHQ=90°∴四边形EHQB是矩形∴BE∥AC,设直线BE的解析式为y=﹣x+b,∵点B(3,3)在直线上,则b=6,∴直线BE的解析式为y=﹣x+6;(3)①∵点P为矩形ABCO的对称中心,∴,∵B(a,3),∴PB的中点坐标为:,∴直线PB的解析式为,∵当P,B关于AD对称,∴AD⊥PB,∴直线AD的解析式为:,∵直线AD过点,∴,解得:a=±3,∵a≥3,∴a=3;②存在M,N;理由:∵a=3,∴直线AD的解析式为y=﹣x+9,∴∴∠DAO=60°,∴∠DAB=30°,连接AE,∵AD=OA=3,DE=OC=3,∴∠EAD=30°,∴A,B,E三点共线,∴AE=2DE=6,∴,设M(m,0),N(0,n),∵四边形EFMN是平行四边形,∴,解得:,∴M(,0),N(0,).【题目点拨】本题考查的是一次函数综合运用,涉及到正方形和等腰三角形性质、圆的基本知识,其中(2),要注意分类求解,避免遗漏.24、(1)见解析;(2)见解析;(3).【解题分析】

(1)由正方形的性质得出∠B=90°,得出∠BAE+∠AEB=90°,由垂直的性质得出∠BAE+∠AMN=90°,即可得出结论;(2)连接AG、EG、CG,证明△ABG≌△CBG得出AG=CG,∠GAB=∠GCB,证出EG=CG,由等腰三角形的性质得出∠GEC=∠GCE,证出∠AGE=90°,由直角三角形斜边上的中线性质得出BF=AE,FG=AE,即可得出结论;(3)过G作交AD于点P,交BC于点Q,证明DP=PG=2,连接ME,证明MN是AE的垂直平分线,得,,再证明得,得,进而得,中,由勾股定理得,代入相关数据,从而得出结论.【题目详解】(1)(1)证明:∵四边形ABCD是正方形,∴∠B=90°,∴∠BAE+∠AEB=90°,∵MN⊥AE于F,∴∠BAE+∠AMN=90°,∴∠AEB=∠AMN;(2)证明:连接AG、EG、CG,∵四边形ABCD是正方形,∴AB=BC,∠ABG=∠CBG=45°,∠ABE=90°,在△ABG和△CBG中,,∴△ABG≌△CBG(SAS),∴AG=CG,∠GAB=∠GCB,∵MN⊥AE于F,F为AE中点,∴AG=EG,∴EG=CG,∴∠GEC=∠GCE,∴∠GAB=∠GEC,∵∠GEB+∠GE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论