版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省长沙一中学雨花新华都学校数学八年级第二学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.介于两个相邻整数之间,这两个整数是()A.2和3 B.3和4 C.4和5 D.5和62.若点P的坐标为(3,4),则点P关于x轴对称点的点P′的坐标为()A.(4,-3) B.(3,-4) C.(-4,3) D.(-3,4)3.在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD的周长是()A.22 B.20C.22或20 D.184.已知正比例函数,且随的增大而减小,则的取值范围是()A. B. C. D.5.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠AEB等于()A.18° B.36° C.72° D.108°6.在某校举行的“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.众数 B.方差 C.中位数 D.平均数7.已知一组数据:10,8,6,10,8,13,11,12,10,10,7,9,8,12,9,11,12,9,10,11,则分组后频率为0.2的一组是()A.6~7B.8~9C.10~11D.12~138.如图,在正方形中,以点为圆心,以长为半径画圆弧,交对角线于点,再分别以点、为圆心,以大于长为半径画圆弧,两弧交于点,连结并延长,交的延长线于点,则的大小为()A. B. C. D.9.如图所示,在正方形ABCD中,点E,F分别在CD,BC上,且BF=CE,连接BE,AF相交于点G,则下列结论不正确的是()A.BE=AF B.∠DAF=∠BECC.∠AFB+∠BEC=90° D.AG⊥BE10.关于x的不等式2x-a≤-1的解集在数轴上表示如下,则a的取值范围是()A.a≤-1 B.a≤-2 C.a=1 D.a=-2二、填空题(每小题3分,共24分)11.我们知道:当时,不论取何实数,函数的值为3,所以直线一定经过定点;同样,直线一定经过的定点为______.12.已知平行四边形ABCD中,,,AE为BC边上的高,且,则平行四边形ABCD的面积为________.13.为了了解我县八年级学生的视力情况,从中随机抽取名学生进行视力情况检查,这个问题中的样本容量是___.14.已知一次函数y=kx﹣k,若y随着x的增大而减小,则该函数图象经过第____象限.15.如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是_____.16.菱形的周长为8,它的一个内角为60°,则菱形的较长的对角线长为__________.17.如图(1)所示,在Rt△ABC中,∠B=90°,AB=4,BC=3,将△ABC沿着AC翻折得到△ADC,如图(2),将△ADC绕着点A旋转到△AD′C′,连接CD′,当CD′∥AB时,四边形ABCD的面积为_____.18.如图,已知在中,,点是延长线上的一点,,点是上一点,,连接,、分别是、的中点,则__________.三、解答题(共66分)19.(10分)甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,乙出发,设甲与A地相距y甲(km),乙与A地相距y乙(km),甲离开A地的时间为x(h),y甲、y乙与x之间的函数图象如图所示.(1)甲的速度是_____km/h;(2)当1≤x≤5时,求y乙关于x的函数解析式;(3)当乙与A地相距240km时,甲与A地相距_____km.20.(6分)已知直线分别交x轴于点A、交y轴于点求该直线的函数表达式;求线段AB的长.21.(6分)如图为一个巨型广告牌支架的示意图,其中AB=13m,AD=12m,BD=5m,AC=15m,求广告牌支架的示意图ΔABC的周长.22.(8分)某校为了了解八年级学生的身体素质情况,该校体育老师从八年级学生中随机抽取了50名进行一分钟跳绳次数测试,以测试数据为样本,绘制了如下的统计图表:组别次数频数(人数)第1组6第2组8第3组第4组18第5组6请结合图表完成下列问题:(1)表中的______;(2)请把频数分布直方图补充完整;(3)所抽取的50名学生跳绳成绩的中位数落在哪一组?(4)该校八年级学生共有500人,若规定一分钟跳绳次数()在时为达标,请估计该校八年级学生一分钟跳绳有多少人达标?23.(8分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.24.(8分)小辉为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图1.小辉发现每月每户的用水量在之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变.根据小军绘制的图表和发现的信息,完成下列问题:(1),小明调查了户居民,并补全图1;(1)每月每户用水量的中位数落在之间,众数落在之间;(3)如果小明所在的小区有1100户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数多少?25.(10分)由中宣部建设的“学习强国”学习平台正式上线。这是推动新时代中国特色社会主义思想、推进马克思主义学习型政党和学习型社会建设的创新举措.某基层党组织随机抽取了部分党员的某天的学习成绩并进行了整理,分成5个小组(表示成绩,单位:分,且),根据学习积分绘制出部分频数分布表和部分频数分布直方图,其中第2、第5两组测试成绩人数直方图的高度比为,请结合下列图标中相关数据回答下列问题:学习积分频数分布表组别成绩分频数频率第1组5第2组第3组1530%第4组10第5组(1)填空:_____,______;(2)补全频数分布直方图;(3)这次积分的中位数落在第______组;(4)已知该党组织共有党员225人;请估计当天学习积分获得“优秀”等级()的党员有多少人?26.(10分)已知反比例函数y=的图象经过点(-1,-2).(1)求y与x的函数关系式;(2)若点(2,n)在这个图象上,求n的值.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】
根据无理数的估算得出的大小范围,即可得答案.【题目详解】∵9<15<16,∴3<<4,故选B.【题目点拨】本题考查的是估算无理数的大小,根据题意估算出的大小范围是解答此题的关键.2、B【解题分析】
根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”即可求解.【题目详解】∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴P′的坐标为(3,−4).故选:B.【题目点拨】本题考查关于x轴对称的点的坐标的特点,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数,比较简单.3、C【解题分析】试题解析:在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,BC=BE+EC,如图,①当BE=3,EC=4时,平行四边形ABCD的周长为:2(AB+AD)=2(3+3+4)=1.②当BE=4,EC=3时,平行四边形ABCD的周长为:2(AB+AD)=2(4+4+3)=2.故选C.考点:平行四边形的性质.4、D【解题分析】
根据正比例函数的性质,时,随的增大而减小,即,即可得解.【题目详解】根据题意,得即故答案为D.【题目点拨】此题主要考查正比例函数的性质,熟练掌握,即可解题.5、B【解题分析】
首先根据平行四边形的性质,得出∠ABC的度数,又由BE平分∠ABC,得出∠ABE=∠CBE,∠AEB和∠CBE是内错角,相等,即可得出∠AEB.【题目详解】解:∵□ABCD中,∠C=108°,∴∠ABC=180°-108°=72°又∵BE平分∠ABC,∴∠ABE=∠CBE=36°又∵∠AEB=∠CBE∴∠AEB=36°故答案为B.【题目点拨】此题主要考查利用平行四边形的性质求角的度数,熟练掌握即可解题.6、C【解题分析】
由于比赛取前3名进入决赛,共有5名选手参加,故应根据中位数的意义解答即可.【题目详解】解:因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从大到小排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入决赛了;故选:C.【题目点拨】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7、D【解题分析】分析:分别计算出各组的频数,再除以10即可求得各组的频率,看谁的频率等于0.1.
详解:A中,其频率=1÷10=0.1;
B中,其频率=6÷10=0.3;
C中,其频率=8÷10=0.4;
D中,其频率=4÷10=0.1.
故选:D.
点睛:首先数出数据的总数,然后数出各个小组内的数据个数,即频数.根据频率=频数÷总数进行计算.8、B【解题分析】
根据正方形的性质得到∠DAC=∠ACD=45°,由作图知,∠CAP=∠DAC=22.5°,根据三角形的内角和即可得到结论.【题目详解】解:在正方形中,∠DAC=∠ACD=45∘,由作图知,∠CAP=∠DAP=22.5°,∴∠P=180°−∠ACP−∠CAP=22.5°,故选B.【题目点拨】本题考察了正方形的性质,掌握正方形的对角线平分对角是解题的关键.9、C【解题分析】∵ABCD是正方形,∴∠ABF=∠C=90°,AB=BC.∵BF=CE,∴△ABF≌△BCE.∴AF=BE(第一个正确).∠BAF=∠CBE,∠BFA=∠BEC(第三个错误).∵∠BAF+∠DAF=90°,∠BAF+∠BFA=90°,∴∠DAF=∠BEC(第二个正确).∵∠BAF=∠CBE,∠BAF+∠AFB=90°.∴∠CBE+∠AFB=90°.∴AG⊥BE(第四个正确).所以不正确的是C,故选C.10、C【解题分析】
先根据在数轴上表示不等式解集的方法求出不等式的解集,再列出关于a的方程,求出a的取值范围即可.【题目详解】解:由数轴上表示不等式解集的方法可知,此不等式的解集为x≤0,解不等式2x-a≤-1得,x≤a-12,即a-12=0,解得a=1.故选【题目点拨】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.二、填空题(每小题3分,共24分)11、【解题分析】
先将y=(k-2)x+3k化为:y=(x+3)k-2x,可得当x=-3时,不论k取何实数,函数y=(x+3)k-2x的值为6,即可得到直线y=(k-2)x+3k一定经过的定点为(-3,6).【题目详解】根据题意,y=(k-2)x+3k可化为:y=(x+3)k-2x,∴当x=-3时,不论k取何实数,函数y=(x+3)k-2x的值为6,∴直线y=(k-2)x+3k一定经过的定点为(-3,6),故答案为:(-3,6).【题目点拨】本题主要考查了一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.12、2或1【解题分析】
分高AE在△ABC内外两种情形,分别求解即可.【题目详解】①如图,高AE在△ABC内时,在Rt△ABE中,BE==9,在Rt△AEC中,CE==5,∴BC=BE+EC=14,∴S平行四边形ABCD=BC×AE=14×12=1.②如图,高AE在△ABC外时,BC=BE-CE=9-5=4,∴S平行四边形ABCD=BC×AE=12×4=2,故答案为1或2.【题目点拨】本题考查平行四边形的性质.四边形的面积,解题的关键是学会用分类讨论的思想思考问题.13、【解题分析】
根据样本容量则是指样本中个体的数目,可得答案.【题目详解】为了了解我县八年级学生的视力情况,从中随机抽取1200名学生进行视力情况检查,在这个问题中,样本容量是1200,故答案为:1200.【题目点拨】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.14、【解题分析】试题分析:∵一次函数y=kx﹣k,y随着x的增大而减小,∴k<0,即﹣k>0,∴该函数图象经过第一、二、四象限.故答案为一、二、四.考点:一次函数图象与系数的关系.15、.【解题分析】
连接BD,根据菱形的对角线平分一组对角线可得∠BAD=∠ADC=60°,然后判断出△ABD是等边三角形,连接DE,根据轴对称确定最短路线问题,DE与AC的交点即为所求的点P,PE+PB的最小值=DE,然后根据等边三角形的性质求出DE即可得解.【题目详解】如图,连接BD,四边形ABCD是菱形,∠BAD=∠ADC=×120°=60°AB=AD(菱形的邻边相等),△ABD是等边三角形,连接DE,B、D关于对角AC对称,DE与AC的交点即为所求的点P,PE+PB的最小值=DEE是AB的中点,DE⊥AB菱形ABCD周长为16,AD=16÷4=4DE=×4=2故答案为216、【解题分析】
由菱形的性质可得AB=2,AC⊥BD,BD=2OB,由直角三角形的性质可得AO=1,由勾股定理可求BO的长,即可得BD的长.【题目详解】解:如图所示:∵菱形ABCD的周长为8,∴AB=2,AC⊥BD,BD=2OB,∵∠ABC=60°,∴∠ABO=∠ABC=30°,∴AO=1,∴BO=,∴BD=,故答案为:.【题目点拨】本题考查了菱形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,熟记性质是解题的关键,作出图形更形象直观.17、【解题分析】
过点A作AE⊥AB交CD′的延长线于E,构造直角三角形,利用勾股定理即可.【题目详解】解:如图(2),过点A作AE⊥AB交CD′的延长线于E,由翻折得AD=AB=4∵CD′∥AB∴∠BCE+∠ABC=180°,∵∠ABC=90°∴∠BCE=90°∵AE⊥AB∴∠BAE=90°∴ABCE是矩形,AD′=AD=AB=4∴AE=BC=3,CE=AB=4,∠AEC=90°∴D′E==∴CD′=CE﹣D′E=4﹣∴S四边形ABCD′=(AB+CD′)•BC=(4+4﹣)×3=,故答案为:.【题目点拨】本题考查了勾股定理,矩形性质,翻折、旋转的性质,梯形面积等,解题关键对翻折、旋转几何变换的性质要熟练掌握和运用.18、13【解题分析】
根据题意连接,取的中点,连接,,利用三角形中位线定理得到,,再根据勾股定理即可解答.【题目详解】连接,取的中点,连接,,∵、分别是、的中点,∴OM=BE,ON=AD,∴,,∵、分别是、的中点,的中点,∴OM∥EB,ON∥AD,且,∴∠MON=90°,由勾股定理,.故答案为:13.【题目点拨】此题考查三角形中位线定理,勾股定理,解题关键在于作辅助线.三、解答题(共66分)19、(1)V甲=60km/h(2)y乙=90x-90(3)220【解题分析】
(1)根据图象确定出甲的路程与时间,即可求出速度;(2)利用待定系数法确定出y乙关于x的函数解析式即可;(3)求出乙距A地240km时的时间,加上1,再乘以甲的速度即可得到结果.【题目详解】(1)根据图象得:360÷6=60km/h;(2)当1≤x≤5时,设y乙=kx+b,把(1,0)与(5,360)代入得:,解得:k=90,b=-90,则y乙=90x-90;(3)∵乙与A地相距240km,且乙的速度为360÷(5-1)=90km/h,∴乙用的时间是240÷90=h,则甲与A地相距60×(+1)=220km.【题目点拨】此题考查了一次函数的应用,弄清图象中的数据是解本题的关键.20、(1);(2)AB=.【解题分析】
把B点坐标代入中求出b即可;先利用一次函数解析式确定A点坐标,然后利用勾股定理计算出AB的长.【题目详解】解:把代入得,所以该直线的函数表达式为;当时,,解得,则,所以AB的长.【题目点拨】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.21、ΔABC的周长为42m.【解题分析】
直接利用勾股定理逆定理得出AD⊥BC,再利用勾股定理得出DC的长,进而得出答案.【题目详解】解:在ΔABD中,∵AB=13m ∴A∴∠ADB=∠ADC=90°∴AD⊥BC在RtΔADC中,∵AD=12m ∴DC=A∴BC=BD+DC=5+9=14m∴BC+AB+AC=14+13+15=42m∴ΔABC的周长为42m.【题目点拨】此题主要考查了勾股定理以及勾股定理的逆定理,正确得出DC的长是解题关键.22、(1)12;(2)见解析;(3)第3组;(4)360人;【解题分析】
(1)用调查总人数减去其他小组的频数即可求得a值;(2)根据调查的总人数和每一小组的频数即可确定中位数落在那个范围内;(3)用总人数乘以达标率即可.【题目详解】(1)a=50-6-8-18-6=12;统计图为:(2)∵共50人,∴中位数为第25人和第26人的平均数,∵第25人和第26人均落在第3小组内,∴中位数落在第3小组内;(3)达优人数为:500×=360人;估计该校八年级学生一分钟跳绳有360人达标?【题目点拨】此题主要考查读频数分布直方图的能力和利用统计图获取信息的能力.解题的关键是根据直方图得到进一步解题的有关信息.23、(1)证明见解析;(2)四边形ACEF是菱形,理由见解析.【解题分析】
(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【题目详解】试题解析:(1)∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【题目点拨】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质等,结合图形,根据图形选择恰当的知识点是关键.24、(1)110,84,补图见解析;(1),;(3)700户【解题分析】
(1)利用即可求出n的值,利用“对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变”的居民的数量除以相应的百分比即可求出调查的总数量,然后用总数量减去用水量在,的居民的数量,即可求出用水量在之间的居民的数量,即可补全图1;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年德州驾校考试客运从业资格证考试
- 2024年许昌道路客运从业资格证模拟考试
- 2024年天津客运资格证多少道题
- 2024年镇江道路运输客运从业资格证考试
- 2024年丹东道路客运从业资格证考试
- 2024年度电商平台推广及运营合同
- 幼儿园工作总结与反思
- 光纤光栅传感器研发及其在土木工程中的应用进展
- 经济师考试旅游经济(中级)专业知识和实务试题及答案指导
- 用户行为视角下信息茧房“形成-演化-突破”一体化建模与仿真研究
- 人力资源管理HR人力资源管理解决方案
- 第二单元大单元教学设计 2023-2024学年统编版高中语文必修上册
- 事业单位竞争上岗实施方案
- 生涯发展报告
- 管理评审输入材料
- VR游戏设计与制作智慧树知到期末考试答案2024年
- 2024年卫生系统招聘考试-卫生系统招聘考试(公共卫生管理)笔试历年真题荟萃含答案
- 工业机器人大学生职业生涯规划
- 企业风险管理与人才培养的关系
- 部编版一年级语文上册第八单元
- 配网电力工人培训课件
评论
0/150
提交评论