湖北省孝感市云梦县2024届数学八年级第二学期期末学业质量监测模拟试题含解析_第1页
湖北省孝感市云梦县2024届数学八年级第二学期期末学业质量监测模拟试题含解析_第2页
湖北省孝感市云梦县2024届数学八年级第二学期期末学业质量监测模拟试题含解析_第3页
湖北省孝感市云梦县2024届数学八年级第二学期期末学业质量监测模拟试题含解析_第4页
湖北省孝感市云梦县2024届数学八年级第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省孝感市云梦县2024届数学八年级第二学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知,如图,正方形的面积为25,菱形的面积为20,求阴影部分的面积()A.11 B.6.5 C.7 D.7.52.如图,在平行四边行ABCD中,AD=8,点E、F分别是BD、CD的中点,则EF等于()A.3.5 B.4 C.4.5 D.53.两组数据:98,99,99,100和98.5,99,99,99.5,则关于以下统计量说法不正确的是()A.平均数相等B.中位数相等C.众数相等D.方差相等4.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)5.如图,在中,,,,将绕点逆时针旋转得到△,连接,则的长为A. B. C.4 D.66.下列说法正确的是()A.同位角相等B.同一平面内的两条不重合的直线有相交、平行和垂直三种位置关系C.三角形的三条高线一定交于三角形内部同一点D.三角形三条角平分线的交点到三角形三边的距离相等7.据益阳气象部门记载,2018年6月30日益阳市最高气温是33℃,最低气温是24℃,则当天益阳市气温(℃)的变化范围是()A. B. C. D.8.关于x的一元二次方程(m﹣1)x2﹣x+m2﹣1=0的一个根是0,则它的另一个根是()A.0 B. C.﹣ D.29.如图,两个大小不同的正方形在同一水平线上,小正方形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x,两个正方形重叠部分的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B. C. D.10.一次函数y=-3x+m的图象经过点P-2,3,且与x轴,y轴分别交于点A、B,则△AOBA.12 B.1 C.3211.在中,,,、、的对边分别是、、,则下列结论错误的是()A. B. C. D.12.已知xy=1A.32 B.13 C.2二、填空题(每题4分,共24分)13.多边形的每个外角都等于45°,则这个多边形是________边形.14.观察下列按顺序排列的等式:,试猜想第n个等式(n为正整数):an=_____.15.一粒米的重量约为0.000036克,用科学记数法表示为_____克.16.如图,在矩形中,,.若点是边的中点,连接,过点作交于点,则的长为______.17.用反证法证明“等腰三角形的底角是锐角”时,首先应假设_____18.在Rt△ABC中,∠C=90°,△ABC的周长为,其中斜边的长为2,则这个三角形的面积为_____________。三、解答题(共78分)19.(8分)如图,ΔABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠ACB=30∘,∠B=45∘,20.(8分)先化简,再求值:,其中x是不等式的负整数解.21.(8分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-3,1),B(-1,3),C(0,1).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后的△A1B1C;(2)平移△ABC,若点A的对应点A2的坐标为(-5,-3),画出平移后的△A2B2C2;(3)若△A2B2C2和△A1B1C关于点P中心对称,请直接写出旋转中心P的坐标.22.(10分)如图,在平行四边形ABCD中,AB⊥AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,求证:OE=OF;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;(3)若AB=1,BC=,且BF=DF,求旋转角度α的大小.23.(10分)如图,在平面直角坐标系,已知四边形是矩形,且(0,6),(8,0),若反比例函数的图象经过线段的中点,交于点,交于点.设直线的解析式为.(1)求反比例函数和直线的解析式;(2)求的面积:(3)请直接写出不等式的解集.24.(10分)如图,已知某学校A与笔直的公路BD相距3000米,且与该公路上的一个车站D距5000米,现要在公路边建一个超市C,使之与学校A及车站D的距离相等,那么该超市与车站D的距离是多少米?25.(12分)如图,在中,为边的中点,过点作,与的延长线相交于点,为延长上的任一点,联结、.(1)求证:四边形是平行四边形;(2)当为边的中点,且时,求证:四边形为矩形.26.在一次夏令营活动中,主办方告诉营员们A、B两点的位置及坐标分别为(-3,1)、(-2,-3),同时只告诉营员们活动中心C的坐标为(3,2)(单位:km)(1)请在图中建立直角坐标系并确定点C的位置;(2)若营员们打算从点B处直接赶往C处,请用方向角B和距离描述点C相对于点B的位置.

参考答案一、选择题(每题4分,共48分)1、A【解题分析】

由题意易得AB=BC=BP=PQ=QC=5,EC=4,在Rt△QEC中,可根据勾股定理求得EQ=3,又有PE=PQ-EQ=2,进而可得S阴影的值.【题目详解】∵正方形ABCD的面积是25,

∴AB=BC=BP=PQ=QC=5,

又∵S菱形BPQC=PQ×EC=5×EC=20,

∴S菱形BPQC=BC•EC,

即20=5•EC,

∴EC=4

在Rt△QEC中,EQ==3;

∴PE=PQ-EQ=2,

∴S阴影=S正方形ABCD-S梯形PBCE=25-×(5+2)×4=25-14=1.故选A.【题目点拨】此题考查菱形的性质,正方形的性质,解题关键在于利用勾股定理进行计算.2、B【解题分析】分析:由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=1,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.详解:∵四边形ABCD是平行四边形,∴BC=AD=1.∵点E、F分别是BD、CD的中点,∴EF=BC=×1=2.故选B.点睛:本题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.3、D【解题分析】

根据平均数的计算公式、众数和中位数的概念以及方差的计算公式计算,判断即可.【题目详解】14(98+99+99+100)=99,14(98.5+99+99+99.5)=99,平均数相等,两组数据:98,99,99,100和98.5,99,99,99.5的中位数都是99,众数是99,则中位数相等,众数相等,B、C不合题意;14[(98﹣99)2+(99﹣99)2+(99﹣99)2+[100﹣99)2]=12,14[(98.5﹣99)2+(99﹣99)2+(99﹣99)2+[99.5﹣99)故选D.【题目点拨】本题考查了平均数、众数、中位数和方差,掌握它们的概念以及计算公式是解题的关键.4、B【解题分析】试题分析:由平移规律可得将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是(1,5),故选B.考点:点的平移.5、B【解题分析】

根据条件求出∠BAC=90°,从而利用勾股定理解答即可.【题目详解】将绕点逆时针旋转得到△,,,,,,,在中,.故选:.【题目点拨】本题考查旋转和勾股定理,解题关键是掌握旋转的性质和勾股定理公式.6、D【解题分析】

利用平行线的性质、直线的位置关系、三角形的高的定义及角平分线的性质分别判断后即可确定正确的选项.【题目详解】A、两直线平行,同位角相等,故错误;B、同一平面内的两条不重合的直线有相交、平行两种位置关系,故错误;C、钝角三角形的三条高线的交点位于三角形的外部,故错误;D、三角形三条角平分线的交点到三角形三边的距离相等,正确,故选:D.【题目点拨】本题考查了平行线的性质、直线的位置关系、三角形的高的定义及角平分线的性质等知识,属于基础性的定义及定理,比较简单.7、D【解题分析】

根据题意和不等式的定义,列不等式即可.【题目详解】解:根据题意可知:当天益阳市气温(℃)的变化范围是故选D.【题目点拨】此题考查的是不等式的定义,掌握不等式的定义是解决此题的关键.8、C【解题分析】

把代入方程得出,求出,代入方程,解方程即可求出方程的另一个根.【题目详解】解:把x=0代入方程(m﹣1)x2﹣x+m2﹣1=0得:m2﹣1=0,解得:m=±1,∵方程(m﹣1)x2﹣x+m2﹣1=0是一元二次方程,∴m﹣1≠0,解得:m≠1,∴m=﹣1,代入方程得:﹣2x2﹣x=0,﹣x(2x+1)=0,x1=0,x2=﹣,即方程的另一个根为﹣,故选:C.【题目点拨】本题考查了解一元二次方程,一元二次方程的解的定义的应用,关键是求出m的值.9、C【解题分析】

小正方形运动过程中,y与x的函数关系为分段函数,即当0≤x<完全重叠前,函数为为增函数;当完全重叠时,函数为平行于x轴的线段;当不再完全重叠时,函数为为减函数.即按照自变量x分为三段.【题目详解】解:依题意,阴影部分的面积函数关系式是分段函数,

面积由“增加→不变→减少”变化.

故选C.【题目点拨】本题考查了动点问题的函数图象.关键是理解图形运动过程中的几个分界点.本题也可以通过分析s随x的变化而变化的趋势及相应自变量的取值范围,而不求解析式来解决问题.10、C【解题分析】

由一次函数y=−3x+m的图象经过点P(−2,3),可求m得值,确定函数的关系式,进而可求出与x轴,y轴分别交于点A、B的坐标,从而知道OA、OB的长,可求出△AOB的面积.【题目详解】解:将点P(−2,3)代入一次函数y=−3x+m得:3=6+m,∴m=−3∴一次函数关系式为y=−3x−3,当x=0时,y=−3;当y=0是,x=−1;∴OA=1,OB=3,∴S△AOB=12×1×3=3故选:C.【题目点拨】考查一次函数图象上点的坐标特征,以及一次函数的图象与x轴、y轴交点坐标求法,正确将坐标与线段的长的相互转化是解决问题的前提和基础.11、D【解题分析】

根据直角三角形的性质得到c=1a,根据勾股定理计算,判断即可.【题目详解】解:∵∠C=90°,∠A=30°,

∴c=1a,A正确,不符合题意;

由勾股定理得,a1+b1=c1,B正确,不符合题意;

b==a,即a:b=1:,C正确,不符合题意;

∴b1=3a1,D错误,符合题意,

故选:D.【题目点拨】本题考查的是勾股定理、直角三角形的性质,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.12、A【解题分析】

由题干可得y=2x,代入x+yy【题目详解】∵xy∴y=2x,∴x+yy故选A.【题目点拨】本题考查了比例的基本性质:两内项之积等于两外项之积.即若ab=cd,则二、填空题(每题4分,共24分)13、八【解题分析】

根据多边形的外角和等于360°,用360°除以多边形的每个外角的度数,即可得出这个多边形的边数.【题目详解】解:∵360°÷45°=8,∴这个多边形是八边形.故答案为:八.【题目点拨】此题主要考查了多边形的外角,要熟练掌握,解答此题的关键是要明确:多边形的外角和等于360°.14、.【解题分析】

根据题意可知,∴.15、3.6×10﹣1【解题分析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.000036=3.6×10﹣1;故答案为:3.6×10﹣1.【题目点拨】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16、【解题分析】

根据S△ABE=S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.【题目详解】解:如图,连接BE.

∵四边形ABCD是矩形,

∴AB=CD=2,BC=AD=3,∠D=90°,

在Rt△ADE中,AE=∵S△ABE=S矩形ABCD=3=•AE•BF,

∴BF=.故答案为:.【题目点拨】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题关键是灵活运用所学知识解决问题,用面积法解决有关线段问题是常用方法.17、等腰三角形的底角是钝角或直角【解题分析】根据反证法的第一步:假设结论不成立设,可以假设“等腰三角形的两底都是直角或钝角”.

故答案是:等腰三角形的两底都是直角或钝角.18、0.5【解题分析】

首先根据三角形周长及斜边长度求得两直角边的和,再根据勾股定理得出两直角边各自平方数的和的值,再利用完全平方公式得出两直角边的乘积的2倍的值即可求出三角形面积.【题目详解】解:由题意可得AC+BC+AB=,∵∠C=90°,则AB为斜边等于2,∴AC+BC=,再根据勾股定理得出,根据完全平方公式,将AC+BC=和代入公式得:,即=1,∴Rt△ABC面积=0.5=0.5.【题目点拨】本题考查了勾股定理,解题的关键是利用完全平方公式求得两直角边的乘积的2倍的值.三、解答题(共78分)19、(1)详见解析;(2)BG=5+5【解题分析】

(1)根据CD平分∠ACB,得到∠ACD=∠DCG,再根据EG垂直平分CD,得到DG=CG,DE=EC,从而得到∠EDC=∠DCG=∠ACD=∠GDC,故CE∥DG,DE∥GC,从而证明四边形DECG是平行四边形,再根据DE=EC证明四边形DGCE是菱形;(2)过点D作DH⊥BC,由(1)知CG=DG=10,DG∥EC,得到∠ACB=∠DGB=30∘,且DH⊥BC,得到HG=3DH=53,由∠B=45【题目详解】解:(1)证明:∵CD平分∠ACB,∴∠ACD=∠DCG,∵EG垂直平分CD,∴DG=CG,DE=EC,∴∠DCG=∠GDC,∠ACD=∠EDC,∴∠EDC=∠DCG=∠ACD=∠GDC,∴CE∥DG,DE∥GC,∴四边形DECG是平行四边形,又∵DE=EC,∴四边形DGCE是菱形;(2)如图,过点D作DH⊥BC,由(1)知∴CG=DG=10,DG∥EC,∴∠ACB=∠DGB=30∘,且∴DH=5,HG=3∵∠B=45∘,∴∠B=∠BDH=45∴BH=DH=5,∴BG=BH+HG=5+53【题目点拨】此题主要考查菱形的判定与性质,解题的关键是熟知菱形的判定定理、含30°的直角三角形的性质及等腰直角三角形的性质.20、;3【解题分析】

先将括号里面的通分后,将除法转换成乘法,约分化简.然后解一元一次不等式求出负整数解,代x的值求值.【题目详解】解:原式=解得,负整数解为将代入原式=21、(1)见解析;(2)见解析;(3)(-1,-1)【解题分析】

(1)分别将A,B绕C点旋转180°,得到A1,B1,再顺次连接即可得△A1B1C;(2)由A(-3,1)到A2(-5,-3)是向左平移2个单位,再向下平移4个单位,将B,C以同样的方式平移得到B2,C2,再顺次连接即可得△A2B2C2;(3)连接B1B2,CC2,交点即为旋转中心P.【题目详解】(1)如图所示,△A1B1C即为所求;(2)如图所示,△A2B2C2即为所求;(3)旋转中心P的坐标为(-1,-1).【题目点拨】本题考查网格作图,熟练掌握点的旋转与平移是解题的关键,寻找旋转中心的方法是连接旋转前后对应点,交点即为旋转中心.22、(1)证明见解析;(2)平行四边形,理由见解析;(3)45°【解题分析】

(1)由平行四边形的性质得出∠OAF=∠OCE,OA=OC,进而判断出△AOF≌△COE,即可得出结论;(2)先判断出∠BAC=∠AOF,得出AB∥EF,即可得出结论;(3)先求出AC=2,进而得出A=1=AB,即可判断出△ABO是等腰直角三角形,进一步判断出△BFD是等腰三角形,利用等腰三角形的三线合一得出∠BOF=90°,即可得出结论.【题目详解】(1)证明:在▱ABCD中,AD∥BC,∴∠OAF=∠OCE,∵OA=OC,∠AOF=∠COE,∴△AOF≌△COE(ASA),∴OE=OF;(2)当旋转角为90°时,四边形ABEF是平行四边形,理由:∵AB⊥AC,∴∠BAC=90°,∵∠AOF=90°,∴∠BAC=∠AOF,∴AB∥EF,∵AF∥BE,∴四边形ABEF是平行四边形;(3)在Rt△ABC中,AB=1,BC=,∴AC==2,∴OA=1=AB,∴△ABO是等腰直角三角形,∴∠AOB=45°,∵BF=DF,∴△BFD是等腰三角形,∵四边形ABCD是平行四边形,∴OB=OD,∴OF⊥BD(等腰三角形底边上的中线是底边上的高),∴∠BOF=90°,∴∠α=∠AOF=∠BOF﹣∠AOB=45°.【题目点拨】此题是四边形综合题,主要考查了平行四边形的性质和判定,全等三角形的判定和性质,等腰三角形的判定和性质,等腰直角三角形的性质,旋转的性质,判断出△ABO是等腰直角三角形是解本题的关键.23、(1),;(2)22.5;(3)或【解题分析】

(1)由点B、D的坐标结合矩形的性质即可得出点C的坐标,由中点的性质即可得出点A的坐标,再结合反比例函数图象上点的坐标特征即可得出k值,由此即可得出反比例函数解析式;由点F的横坐标、点E的纵坐标结合反比例函数解析式即可得出点E、F的坐标,再由点E、F的坐标利用待定系数法即可求出直线EF的解析式;

(2)通过分割图形并利用三角形的面积公式即可求出结论;

(3)观察函数图象,根据两函数图象的上下关系结合交点坐标即可得出不等式的解集.【题目详解】(1):(0,6),(8,0)∴(8,6)∴中点(4,3)∴∴∴设,∴∴,∴,∴∴,,∴(2)=22.5(3)根据图像可得或.【题目点拨】本题考查了矩形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论