版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长郡教育集团2024届八年级数学第二学期期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,正方形中,点是对角线上的一点,且,连接,,则的度数为()A.20° B.22.5° C.25° D.30°2.下列各命题是假命题的是()A.平行四边形的对角相等 B.四条边都相等的四边形是菱形C.正方形的两条对角线互相垂直 D.矩形的两条对角线互相垂直3.下列计算正确的是()A. B.C.=1 D.4.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥1 C.x≤﹣1 D.x<﹣15.四边形的四条边长依次为a、b、c、d,其中a,c为对边且满足,那么这个四边形一定是()A.任意四边形 B.对角线相等的四边形C.平行四边形 D.对角线垂直的四边形6.若Rt△ABC中两条边的长分别为a=3,b=4,则第三边c的长为()A.5 B. C.或 D.5或7.如图,在四边形中,动点从点开始沿的路径匀速前进到为止,在这个过程中,的面积随时间的变化关系用图象表示正确的是()A. B. C. D.8.对于数据3,3,1,3,6,3,10,3,6,3,1.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A.1个 B.1个 C.3个 D.4个9.在一次数学测试中,将某班51名学生的成绩分为5组,第一组到第四组的频率之和为1.8,则第5组的频数是()A.11 B.9 C.8 D.710.已知反比例函数y=6x的图像上有两点A(a-3,2b)、B(a,b-2),且a<0,则b的取值范围是(▲A.b<2 B.b<0 C.-2<b<0 D.b<-211.如图,在菱形中,,分别是,的中点,若,,则菱形的面积为()A. B. C. D.12.-(-6)等于()A.-6 B.6 C. D.±6二、填空题(每题4分,共24分)13.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于________米.14.在函数y=x+2x中,自变量x的取值范围是_______15.某一时刻,身高1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得旗杆的影长是5m,则该旗杆的高度是_________m.16.若对于的任何值,等式恒成立,则__________.17.将一次函数y=3x﹣1的图象沿y轴向_____平移_____个单位后,得到的图象经过原点.18.如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为.三、解答题(共78分)19.(8分)如图,已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O,连接AF、CE.(1)求证:△AOE≌△COF;(2)求证:四边形AFCE为菱形;(3)求菱形AFCE的周长.20.(8分)计算:(48-418)-(313-221.(8分)计算:(1)(2).22.(10分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.(1)求k的值;(2)如果这个方程有两个整数根,求出它的根.23.(10分)化简:,再从不等式中选取一个合适的整数代入求值.24.(10分)如图,已知,在一条直线上,.求证:(1);(2)四边形是平行四边形.25.(12分)如图、,在平行四边形中,、的角平分线、分别与线段两侧的延长线(或线段)相交与、,与相交于点.(1)在图中,求证:,.(2)在图中,仍有(1)中的,成立,请解答下面问题:①若,,,求和的长;②是否能给平行四边形的边和角各添加一个条件,使得点恰好落在边上且为等腰三角形?若能,请写出所给条件;若不能,请说明理由.26.如果一个三角形满足条件:三角形的一个角与菱形的一个角重合,且菱形的这个角的对角顶点在三角形的这个角的对边上,则称这个菱形为该三角形的“亲密菱形”.如题(1),菱形AEFD为△ABC的“亲密菱形”.在图(2)中,请以∠BAC为重合角用直尺和圆规作出△ABC的“亲密菱形”AEFD.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】
根据正方形的性质可得∠CAD=45°,根据等腰三角形的性质可得∠ADE的度数,根据∠CDE=90°-∠ADE即可得答案.【题目详解】∵AC是正方形ABCD的对角线,∴∠CAD=45°,∵AE=AB,AB=AD,∴AE=AD,∴∠ADE=∠AED=67.5°,∵∠ADC=90°,∴∠CDE=∠ADC-∠ADE=90°-67.5°=22.5°.故选B.【题目点拨】本题考查了正方形的性质及等腰三角形的性质,正方形四边都相等,四个角都为90°,对角线互相垂直平分,并且平分每一组对角.熟练掌握相关性质是解题关键.2、D【解题分析】
利于平行四边形的性质、菱形的判定定理、正方形的性质及矩形的性质分别判断后即可确定正确的选项.【题目详解】A.平行四边形的对角相等,正确,为真命题;B.四条边都相等的四边形是菱形,正确,是真命题;C.正方形的两条对角线互相垂直,正确,为真命题;D.矩形的两条对角线相等但不一定垂直,故错误,为假命题,故选D.【题目点拨】此题考查命题与定理,解题关键在于掌握各性质定理.3、D【解题分析】
根据二次根式的加减,二次根式的性质,二次根式的除法逐项计算即可.【题目详解】:A、与不是同类项,不能合并,故此选项错误;B、,故此选项错误;C、,故此选项错误;D、,正确.故选D.【题目点拨】本题考查了二次根式的运算与性质,熟练掌握二次根式的性质与运算法则是解答本题的关键.4、B【解题分析】
根据二次根式有意义的条件判断即可.【题目详解】解:由题意得,x﹣1≥0,解得,x≥1,故选:B.【题目点拨】本题主要考查二次根式有意义的条件,熟悉掌握是关键.5、C【解题分析】
题中给出的式子我们不能直观的知道四边形的形状,则我们可以先首先把变形整理,先去括号,再移项之后,可利用完全平方差的公式得到边之间的关系.从而判断四边形的形状.【题目详解】两个非负数相加得零,只有0+0=0这种情况故所以故得到两组对边相等,则四边形为平行四边形故答案为C【题目点拨】本题通过式与形的结合,考察了非负数的性质和平行四边形的判定.需要了解的知识点有:两个非负数相加得零,只有0+0=0这种情况;两组对边相等的四边形是平行四边形.6、D【解题分析】
分情况讨论:①当a,b为直角边时,求得斜边c的长度;②当a为直角边,b为斜边时,求得另外一条直角边c的长度.【题目详解】解:分两种情况:
①当a,b为直角边时,第三边c==5;
②当a为直角边,b为斜边时,第三边c=.
故选D.【题目点拨】本题考查了勾股定理在直角三角形中的运用,本题中讨论边长为4的边是直角边还是斜边是解题的关键.7、C【解题分析】
根据点的运动过程可知:的底边为,而且始终不变,点到直线的距离为的高,根据高的变化即可判断与的函数图象.【题目详解】解:设点到直线的距离为,的面积为:,当在线段运动时,此时不断增大,也不端增大当在线段上运动时,此时不变,也不变,当在线段上运动时,此时不断减小,不断减少,又因为匀速行驶且,所以在线段上运动的时间大于在线段上运动的时间故选.【题目点拨】本题考查函数图象,解题的关键是根据点到直线的距离来判断与的关系,本题属于基础题型.8、A【解题分析】
将这组数据从小到大排列为:1,1,2,2,2,2,2,2,6,6,10,共11个数,所以第6个数据是中位数,即中位数为2.数据2的个数为6,所以众数为2.平均数为,由此可知(1)正确,(1)、(2)、(4)均错误,故选A.9、A【解题分析】
频率总和为1,由此求出第五组的频率,然后由频率是频数与总数之比,求出频数即可.【题目详解】解:第五组的频率为,所以第五组的频数为.故答案为:A【题目点拨】本题考查了频率频数,掌握频率频数的定义是解题的关键.10、C【解题分析】
先根据k>0判断出在每个象限内,y随x的增大而减小,且图象在第一、三象限,再根据a-3<a<0判断出点A、B都在第三象限,然后根据反比例函数的性质得2b>b-2即可.【题目详解】∵反比例函数y=6x中k=6>∴在每个象限内,y随x的增大而减小,且图象在第一、三象限.∵a<0,∴a-3<a<0,∴0>2b>b-2,∴-2<b<0.故选:C.【题目点拨】本题考查了反比例函数的增减性,利用反比例函数的增减性比较大小时,一定要注意“在每一个象限内”比较大小.11、A【解题分析】
根据EF是△ABC的中位线,由三角形中位线定理求出BC的长.连接BD,然后根据菱形的对角线互相垂直的性质用勾股定理求出BD的长,最后用菱形的面积公式求解.【题目详解】解:连接BD∵E、F分别是AB,AC边上的中点,∴EF是△ABC的中位线,
∴BC=2EF=4,是菱形AC与BD互相垂直平分,BD经过F点,则S菱形ABCD=故选:A.【题目点拨】本题考查了三角形的中位线定理和菱形的性质,理解中位线定理BC、用勾股定理求出BF是关键.12、B【解题分析】
根据相反数的概念解答即可.【题目详解】解:-(-1)=1.故选:B.【题目点拨】本题主要考查相反数的概念,属于应知应会题型,熟知定义是关键.二、填空题(每题4分,共24分)13、6【解题分析】
由菱形花坛ABCD的周长是24米,∠BAD=60°,可求得边长AD的长,AC⊥BD,且∠CAD=30°,则可求得OA的长,继而求得答案.【题目详解】解:∵菱形花坛ABCD的周长是24米,∠BAD=60°,∴AC⊥BD,AC=2OA,∠CAD=∠BAD=30°,AD=6米,∴OA=AD•cos30°=6×=3米,∴AC=2OA=6米.故答案为:6.【题目点拨】此题考查了菱形的性质以及三角函数的应用.熟知菱形的对角线互相垂直且平分是解此题的关键.14、x≥﹣2且x≠0【解题分析】根据题意得x+2≥0且x≠0,即x≥-2且x≠0.15、20【解题分析】
试题分析:设该旗杆的高度为xm,根据三角形相似的性质得到同一时刻同一地点物体的高度与其影长的比相等,即有1.6:0.4=x:5,然后解方程即可.解:设该旗杆的高度为xm,根据题意得,1.6:0.4=x:5,解得x=20(m).即该旗杆的高度是20m.16、【解题分析】
先通分,使等式两边分母一样,然后是使分子相等,可以求出结果。【题目详解】3x-2=3x+3+mm=-5故答案为:-5【题目点拨】此题考查分式的化简求值,掌握运算法则是解题关键17、上1【解题分析】
根据“上加下减”的平移规律解答即可.【题目详解】解:将一次函数y=3x-1的图象沿y轴向上平移1个单位后,得到的图象对应的函数关系式为y=3x-1+1,即y=3x,该函数图象经过原点.故答案为上,1.【题目点拨】此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意直线平移时k的值不变,只有b发生变化.解析式变化的规律是:左加右减,上加下减.18、1.【解题分析】∵ABCD的周长为33,∴2(BC+CD)=33,则BC+CD=2.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=3.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD.∴OE=BC.∴△DOE的周长="OD+OE+DE="OD+(BC+CD)=3+9=1,即△DOE的周长为1.三、解答题(共78分)19、(1)详见解析;(2)详见解析;(3)20cm.【解题分析】
(1)求出AO=OC,∠AOE=∠COF,根据平行的性质得出∠EAO=∠FCO,根据ASA即可得出两三角形全等;(2)根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;(3)设AF=xcm,则CF=AF=xcm,BF=(8-x)cm,在Rt△ABF中,由勾股定理得出方程42+(8-x)2=x2,求出x的值,进而得到菱形AFCE的周长.【题目详解】(1)证明:∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°,∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)证明:∵△AOE≌△COF,∴OE=OF,∵OA=OC,∴四边形AFCE为平行四边形,又∵EF⊥AC,∴平行四边形AFCE为菱形;(3)解:设AF=xcm,则CF=AF=xcm,BF=(8﹣x)cm,在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,即42+(8﹣x)2=x2,解得x=1.所以菱形AFCE的周长为1×4=20cm.【题目点拨】本题考查了菱形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,矩形的性质等知识.根据勾股定理并建立方程是解题的关键.20、33.【解题分析】
先将每个二次根式化成最简二次根式之后,再去掉括号,将同类二次根式进行合并.【题目详解】解:(48-418)-(313-2=(43-2)-(3-2)=43-2-3+2=33.故答案为33.【题目点拨】本题考查了二次根式的加减混合运算,最终结果必须是最简二次根式.21、(1)28﹣10;(2)3a﹣(+3)b.【解题分析】
(1)利用完全平方公式计算;(2)先把各二次根式化简为最简二次根式,然后合并即可.【题目详解】(1)原式=3﹣10+25=28﹣10;(2)原式=3a+b﹣2b﹣3b=3a﹣(+3)b.【题目点拨】此题考查二次根式的混合运算,解题关键在于掌握运算法则22、(2)k=﹣2,﹣2.(2)方程的根为x2=x2=2.【解题分析】
(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.【题目详解】解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k)≥0,解得k≥﹣2.∵k为负整数,∴k=﹣2,﹣2.(2)当k=﹣2时,不符合题意,舍去;当k=﹣2时,符合题意,此时方程的根为x2=x2=2.【题目点拨】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.23、,1【解题分析】
现将括号内的式子通分,再因式分解,然后约分,化简后将符合题意的值代入即可.【题目详解】原式选时,原式【题目点拨】此题考查分式的化简求值、一元一次不等式组的整数解,解题关键在于取合适的整数值求值时,要特注意原式及化简过程中的每一步都有意义.24、(1)详见解析;(2)详见解析.【解题分析】
(1)由题意由“HL”可判定Rt△ABC≌Rt△EDF(2)根据一组对边平行且相等的四边形是平行四边形,可证四边形BCDF是平行四边形.【题目详解】证明:(1)∵AF=EC∴AC=EF又∵BC=DF,∴Rt△ABC≌Rt△EDF(2)∵Rt△ABC≌Rt△EDF∴BC=DF,∠ACB=∠DFE∴∠BCF=∠DFC∴BC∥DF,BC=DF∴四边形BCDF是平行四边形【题目点拨】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,关键是灵活运用性质和判定解决问题.25、(1)见解析;(2)①,,②,,见解析.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球蒸汽甲烷重整蓝氢行业调研及趋势分析报告
- 2025年全球及中国宠物蔓越莓补充剂行业头部企业市场占有率及排名调研报告
- 2025-2030全球可调节轨道灯行业调研及趋势分析报告
- 2025年全球及中国核电用金属管行业头部企业市场占有率及排名调研报告
- 2025-2030全球可见光波段高光谱成像(HSI)设备行业调研及趋势分析报告
- 2025-2030全球玻璃烟斗行业调研及趋势分析报告
- 2025年全球及中国鱼雷泵行业头部企业市场占有率及排名调研报告
- 2025-2030全球I型阳极氧化服务行业调研及趋势分析报告
- 2025农村买房子合同范本
- 工程汽车租赁合同范本
- 2024-2025学年人教版数学六年级上册 期末综合卷(含答案)
- 2025年初级社会工作者综合能力全国考试题库(含答案)
- 2024年潍坊护理职业学院单招职业适应性测试题库附答案
- 《钳工基本知识》课件
- DB63T 2357-2024 危化品常压储罐安全管理规范
- 2022-2023学年五年级数学春季开学摸底考(四)苏教版
- 【蚂蚁保】2024中国商业医疗险发展研究蓝皮书
- 授信审批部工作计划及思路
- 财务管理学(第10版)课件 第3章 财务分析
- 小学语文大单元教学设计与实施
- 小学升初中六年级数学考试试卷含答案(达标题)
评论
0/150
提交评论