版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古阿拉善2024届八年级数学第二学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.对于方程:,下列判断正确的是()A.只有一个实数根 B.有两个不同的实数根C.有两个相同的实数根 D.没有实数根2.若直线y=-2x-4与直线y=4x+b的交点在第三象限,则b的取值范围是()A.-4<b<8 B.-4<b<0 C.b<-4或b>8 D.-4≤6≤83.直角三角形两条直角边的长分别为3和4,则斜边长为()A.4 B.5 C.6 D.104.如图,矩形的面积为28,对角线交于点;以、为邻边作平行四边形,对角线交于点;以、为邻边作平行四边形;…依此类推,则平行四边形的面积为()A. B. C. D.5.如图,是一张平行四边形纸片ABCD(AB<BC),要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:对于甲、乙两人的作法,可判断()A.甲、乙均正确 B.甲、乙均错误 C.甲正确,乙错误 D.甲错误,乙正确6.一个三角形三边的比为1:2:5,则这个三角形是()A.等腰三角形 B.直角三角形 C.锐角三角形 D.钝角三角形7.如果,那么代数式的值为()A. B. C. D.8.在一条笔直的公路上有、两地,甲乙两人同时出发,甲骑自行车从地到地,乙骑自行车从地到地,到达地后立即按原路返回地.如图是甲、乙两人离地的距离与行驶时间之间的函数图象,下列说法中①、两地相距30千米;②甲的速度为15千米/时;③点的坐标为(,20);④当甲、乙两人相距10千米时,他们的行驶时间是小时或小时.正确的个数为()A.1个 B.2个 C.3个 D.4个9.在平行四边形中,已知,,则它的周长是()A.8 B.10 C.12 D.1610.如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度的一半的长为半径画弧,相交于点C,D,则直线CD即为所求.连接AC,BC,AD,BD,根据她的作图方法可知四边形ADBC一定是()A.菱形 B.矩形 C.正方形 D.梯形二、填空题(每小题3分,共24分)11.如图,等腰三角形中,,是底边上的高,则AD=________________.12.若一组数据1,3,,5,4,6的平均数是4,则这组数据的中位数是__________.13.已知圆锥的侧面积为6兀,侧面展开图的圆心角为60º,则该圆锥的母线长是________。14.已知某个正多边形的每个内角都是,这个正多边形的内角和为_____.15.如图,在中,,平分,点为中点,则_____.16.使函数有意义的的取值范围是________.17.正方形中,点是对角线上一动点,过作的垂线交射线于,连接,,则的值为________.18.如图,正方形的边长为,点为边上一点,,点为的中点,过点作直线分别与,相交于点,.若,则长为______.三、解答题(共66分)19.(10分)如图所示的折线ABC表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t之间的函数关系式;(2)通话2分钟应付通话费多少元?通话7分钟呢?20.(6分)我市劲威乡A、B两村盛产柑橘,A村有柑橘200吨,B村有柑橘300吨,现将这些柑橘运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑橘重量为x吨,设A、B两村运往两仓库的柑橘运输费用分别为yA元和yB元.(1)请填写下表(2)求出yA、yB与x之间的函数解析式;(3)试讨论A、B两村中,哪个村的运费最少;(4)考虑B村的经济承受能力,B村的柑橘运费不得超过4830元,在这种情况下,请问怎样调运才能使两村运费之和最小?求出这个最小值.21.(6分)在平面直角坐标系中,过点、分别作轴的垂线,垂足分别为、.(1)求直线和直线的解析式;(2)点为直线上的一个动点,过作轴的垂线交直线于点,是否存在这样的点,使得以、、、为顶点的四边形为平行四边形?若存在,求此时点的横坐标;若不存在,请说明理由;(3)若沿方向平移(点在线段上,且不与点重合),在平移的过程中,设平移距离为,与重叠部分的面积记为,试求与的函数关系式.22.(8分)如图,在4×3正方形网格中,每个小正方形的边长都是1.(1)分别求出线段AB,CD的长度;(2)在图中画线段EF,使得EF的长为,以AB,CD,EF三条线段能否构成直角三角形,并说明理由.23.(8分)如图平面直角坐标系中,点,在轴上,,点在轴上方,,,线段交轴于点,,连接,平分,过点作交于.(1)点的坐标为.(2)将沿线段向右平移得,当点与重合时停止运动,记与的重叠部分面积为,点为线段上一动点,当时,求的最小值;(3)当移动到点与重合时,将绕点旋转一周,旋转过程中,直线分别与直线、直线交于点、点,作点关于直线的对称点,连接、、.当为直角三角形时,直接写出线段的长.24.(8分)如图,四边形ABCD是正方形,E、F分别是AB和AD延长线上的点,BE=DF,在此图中是否存在两个全等的三角形,并说明理由;它们能够由其中一个通过旋转而得到另外一个吗?简述旋转过程.25.(10分)解不等式组:,并在数轴上表示出它的解集.26.(10分)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.1.(1)试求出纸箱中蓝色球的个数;(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】
原方程变形后求出△=b2-4ac的值,然后根据计算结果判断方程根的情况.【题目详解】∵x(x+1)=0,∴x2+x=0,∵a=1,b=1,c=0,∴△=b2-4ac=1-0=1>0∴方程有两个不相等的实数根.故选B.【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.2、A【解题分析】
联立y=-2x-4和y=4x+b,求解得交点坐标,x和y的值都用b来表示,再根据交点坐标在第三象限表明x、y都小于0,即可求得b的取值范围:【题目详解】解:由解得∵交点在第三象限,∴,解得∴-4<b<1.故选A.3、B【解题分析】
利用勾股定理即可求出斜边长.【题目详解】由勾股定理得:斜边长为:=1.故选B.【题目点拨】本题考查了勾股定理;熟练掌握勾股定理,理解勾股定理的内容是解题的关键.4、C【解题分析】
设矩形ABCD的面积为S,则平行四边形AOC1B的面积=矩形ABCD的面积=S,平行四边形AO1C2B的面积=平行四边形AOC1B的面积=,…,平行四边形AOn-1CnB的面积=,平行四边形AOnCn+1B的面积=,即可得出结果.【题目详解】解:设矩形ABCD的面积为S根据题意得:平行四边形AOC1B的面积=矩形ABCD的面积=S平行四边形AO1C2B的面积=平行四边形AOC1B的面积=,…平行四边形AOn-1CnB的面积=∴平行四边形AOnCn+1B的面积=∴平行四边形的面积=故选C.【题目点拨】本题考查了矩形的性质、平行四边形的性质、规律推论等知识,熟练掌握矩形的性质和平行四边形的性质,得出平行四边形AOnCn+1B的面积=是解题的关键.5、A【解题分析】
首先证明△AOE≌△COF(ASA),可得AE=CF,再根据一组对边平行且相等的四边形是平行四边形可判定判定四边形AECF是平行四边形,再由AC⊥EF,可根据对角线互相垂直的四边形是菱形判定出AECF是菱形;四边形ABCD是平行四边形,可根据角平分线的定义和平行线的定义,求得AB=AF,所以四边形ABEF是菱形.【题目详解】甲的作法正确;∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵EF是AC的垂直平分线,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形;乙的作法正确;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选:A.【题目点拨】此题主要考查了菱形形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).6、B【解题分析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【题目详解】解:这个三角形是直角三角形,理由如下:
因为边长之比满足1:2:5,
设三边分别为x、2x、5x,
∵(x)2+(2x)²=(5x)²,
即满足两边的平方和等于第三边的平方,
∴它是直角三角形.
故选B.【题目点拨】本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7、D【解题分析】
先把分母因式分解,再约分得到原式=,然后把x=3y代入计算即可.【题目详解】原式=•(x-y)=,∵x-3y=0,∴x=3y,∴原式==.故选:D.【题目点拨】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.8、C【解题分析】
根据题意,确定①-③正确,当两人相距10千米时,应有3种可能性.【题目详解】解:根据题意可以列出甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数关系得:
y甲=-15x+30
y乙=由此可知,①②正确.
当15x+30=30x时,
解得x=
则M坐标为(,20),故③正确.
当两人相遇前相距10km时,
30x+15x=30-10
x=,
当两人相遇后,相距10km时,
30x+15x=30+10,
解得x=
15x-(30x-30)=10
解得x=
∴④错误.
故选C.【题目点拨】本题为一次函数应用问题,考查学生对于图象分析能力,解答时要注意根据两人运动状态分析图象得到相应的数据,从而解答问题.9、D【解题分析】
根据平行四边形的性质可得AB=CD=5,BC=AD=3,即可得周长.【题目详解】解:∵四边形ABCD是平行四边形,
∴AB=CD=5,BC=AD=3,
∴它的周长为:5×2+3×2=16,
故答案为:D【题目点拨】此题主要考查了平行四边形的性质,关键是掌握平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.10、A【解题分析】
根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形.【题目详解】解:∵分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,∴AC=AD=BD=BC,∴四边形ADBC一定是菱形,故选A.【题目点拨】此题主要考查了线段垂直平分线的性质以及菱形的判定,得出四边形四边关系是解决问题的关键.二、填空题(每小题3分,共24分)11、1【解题分析】
先根据等腰三角形的性质求出BD的长,再根据勾股定理解答即可.【题目详解】根据等腰三角形的三线合一可得:BD=BC=×6=3cm,在直角△ABD中,由勾股定理得:AB2=BD2+AD2,所以,AD=1cm.故答案为1.【题目点拨】本题考查了等腰三角形的性质和勾股定理.关键要熟知等腰三角形的三线合一可得.12、4.5【解题分析】
根据题意可以求得x的值,从而可以求的这组数据的中位数.【题目详解】解:∵数据1、3、x、5、4、6的平均数是4,∴解得:x=5,则这组数据按照从小到大的顺序排列为:1,3,4,5,5,6则中位数为故答案为:4.5【题目点拨】本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.13、6【解题分析】
根据扇形的面积计算公式:,把相应数值代入即可.【题目详解】解:设母线长为r,圆锥的侧面展开后是扇形,侧面积=6π,
∴r=6cm,
故答案是6cm.【题目点拨】本题考查了圆锥的计算,利用了扇形的面积公式求解,解题的关键是牢记圆锥的有关公式,难度不大.14、720°【解题分析】
先求得这个多边形外角的度数,再求得多边形的边数,根据多边形的内角和公式即可求得这个多边形的边数.【题目详解】∵某个正多边形的每个内角都是,∴这个正多边形的每个外角都是,∴这个多边形的边数为:=6.∴这个正多边形的内角和为:(6-2)×180°=720°.故答案为:720°.【题目点拨】本题考查了多边形的内外角和,熟练运用多边形的内外角和公式是解决问题的关键.15、1【解题分析】
根据等腰三角形的三线合一得到∠ADC=90°,根据直角三角形的性质计算即可.【题目详解】解:∵AB=AC,AD平分∠BAC,
∴AD⊥BC,
∴∠ADC=90°,点E为AC中点,
∴DE=AC=1,
故答案为:1.【题目点拨】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.16、且【解题分析】
根据被开方数是非负数且分母不能为零,可得答案.【题目详解】解:由题意,得解得x>-3且.
故答案为:x>-3且.【题目点拨】本题考查函数自变量的取值范围,利用被开方数是非负数且分母不能为零得出不等式是解题关键.17、【解题分析】
如图,连接PC.首先证明PA=PC,利用相似三角形的性质即可解决问题.【题目详解】解:如图,连接PC.
∵四边形ABCD是正方形,
∴点A,点C关于BD对称,∠CBD=∠CDB=45°,
∴PA=PC,
∵PE⊥BD,
∴∠DPE=∠DCB=90°,
∴∠DEP=∠DBC=45°,
∴△DPE∽△DCB,
∴,
∴,
∵∠CDP=∠BDE,
∴△DPC∽△DEB,
∴,
∴BE:PA=,故答案为.【题目点拨】本题考查正方形的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18、1或2【解题分析】
根据题意画出图形,过P作PN⊥BC,交BC于点N,由ABCD为正方形,得到AD=DC=PN,在直角三角形ADE中,利用锐角三角函数定义求出DE的长,进而利用勾股定理求出AE的长,根据M为AE中点求出AM的长,利用HL得到三角形ADE与三角形PQN全等,利用全等三角形对应边,对应角相等得到DE=NQ,∠DAE=∠NPQ=30°,再由PN与DC平行,得到∠PFA=∠DEA=60°,进而得到PM垂直于AE,在直角三角形APM中,根据AM的长,利用锐角三角函数定义求出AP的长,再利用对称性确定出AP′的长即可.【题目详解】根据题意画出图形,过点作,交于点,交于点,四边形为正方形,.在中,,cm,cm.根据勾股定理得cm.为的中点,cm,在和中,,,.,,,即.在中,,cm.由对称性得到cm,综上,等于1cm或2cm.故答案为:1或2.【题目点拨】此题考查了全等三角形的判定与性质,正方形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.三、解答题(共66分)19、(1)当0<t≤3时,y=2.4;当t>3时,y=t-0.6;(2)2.4元;6.4元【解题分析】试题分析:(1)由图,当时,y为恒值;当时,图象过点(3,2.4)、(5,4.4),可根据待定系数法求函数关系式;(2)因为,所以根据AB段对应的函数即可得到结果;因为7>3,所以根据BC段对应的函数关系式即可得结果.(1)当时,;当时,设函数关系式为,∵图象过点(3,2.4)、(5,4.4),,解得,y与t之间的函数关系式为;(2)当时,元,当时,元.考点:本题考查的是一次函数的应用点评:此类题目的解决需仔细分析函数图象,从中找寻信息,利用待定系数法求出函数解析式,从而解决问题.20、(1)200-x,240-x,x+60;(2)yA=-5x+5000,yB=3x+4680;(3)40<x≤200时,yA<yB,A村运费较少,x=40时,yA=yB,,两村运费一样,x<40时,B村运费较少(4)由A村运往C库50吨,运D库150吨,而B村运往C库190吨,运D库110吨则两村运费之和最小,为9580元【解题分析】
(1)结合题意用含x的代数式表示填写即可;(2)利用运送的吨数×每吨运输费用=总费用,列出函数解析式即可解答;(3)由(1)中的函数解析式联立方程与不等式解答即可;(4)首先由B村的荔枝运费不得超过4830元得出不等式,再由两个函数和,根据自变量的取值范围,求得最值.【题目详解】解:(1)A,B两村运输荔枝情况如表,收收地地运运地地
C
D
总计
A
x吨
200-x
200吨
B
240-x
x+60
300吨
总计
240吨
260吨
500吨
(2)yA=20x+25(200-x)=5000-5x,yB=15(240-x)+18(x+60)=3x+4680;(3)①当yA=yB,即5000-5x=3x+4680,解得x=40,当x=40,两村的运费一样多,②当yA>yB,即5000-5x>3x+4680,解得x<40,当0<x<40时,A村运费较高,③当yA<yB,即5000-5x<3x+4680,解得x>40,当40<x≤200时,B村运费较高;(4)B村的荔枝运费不得超过4830元,yB=3x+4680≤4830,解得x≤50,两村运费之和为yA+yB=5000-5x+3x+4680=9680-2x,要使两村运费之和最小,所以x的值取最大时,运费之和最小,故当x=50时,最小费用是9680-2×50=9580(元).21、(1)y=-x+1,y=x;(2)m=或;(3)S=.【解题分析】
(1)理由待定系数法即可解决问题;
(2)如图1中,设M(m,),则N(m,-m+1).当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,可得|-m+1-|=3,解方程即可;
(3)如图2中,设平移中的三角形为△A′O′C′,点C′在线段CD上.设O′C′与x轴交于点E,与直线OD交于点P;设A′C′与x轴交于点F,与直线OD交于点Q.根据S=S△OFQ-S△OEP=OF•FQ-OE•PG计算即可.【题目详解】解:(1)设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=-x+1.
设直线OD的解析式为y=mx,则有3m=1,m=,
∴直线OD的解析式为y=x.(2)存在.
理由:如图1中,设M(m,),则N(m,-m+1).当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,
∴|-m+1-|=3,
解得m=或.(3)如图2中,设平移中的三角形为△A′O′C′,点C′在线段CD上.
设O′C′与x轴交于点E,与直线OD交于点P;
设A′C′与x轴交于点F,与直线OD交于点Q.因为平移距离为t,所以水平方向的平移距离为t(0≤t<2),则图中AF=t,F(1+t,0),Q(1+t,),C′(1+t,3-t).
设直线O′C′的解析式为y=3x+b,
将C′(1+t,3-t)代入得:b=-1t,
∴直线O′C′的解析式为y=3x-1t.∴E(,0).
联立y=3x-1t与y=,解得x=.
∴S=S△OFQ-S△OEP=OF•FQ-OE•PG=(1+t)()-=.【题目点拨】本题考查一次函数综合题、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题关键是根据平行四边形定义,得到MN=AC=3,由此列出方程求解;第(3)问中,解题关键是求出S的表达式,注意图形面积的计算方法.22、;.(2)以AB、CD、EF三条线段可以组成直角三角形【解题分析】
(1)利用勾股定理求出AB、CD的长即可;(2)根据勾股定理的逆定理,即可作出判断.【题目详解】(1)AB==;CD==2.(2)如图,EF==,∵CD2+EF2=8+5=13,AB2=13,∴CD2+EF2=AB2,∴以AB、CD、EF三条线段可以组成直角三角形.【题目点拨】本题考查了勾股定理、勾股定理的逆定理,充分利用网格是解题的关键.23、(1)C(3,3);(3)最小值为3+3;(3)D3H的值为3-3或3+3或1-1或1+1.【解题分析】
(1)想办法求出A,D,B的坐标,求出直线AC,BC的解析式,构建方程组即可解决问题.
(3)如图3中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.利用三角形的面积公式求出点D坐标,再证明PH=PB,把问题转化为垂线段最短即可解决问题.
(3)在旋转过程中,符号条件的△GD3H有8种情形,分别画出图形一一求解即可.【题目详解】(1)如图1中,
在Rt△AOD中,∵∠AOD=93°,∠OAD=33°,OD=3,
∴OA=OD=6,∠ADO=63°,
∴∠ODC=133°,
∵BD平分∠ODC,
∴∠ODB=∠ODC=63°,
∴∠DBO=∠DAO=33°,
∴DA=DB=1,OA=OB=6,
∴A(-6,3),D(3,3),B(6,3),
∴直线AC的解析式为y=x+3,
∵AC⊥BC,
∴直线BC的解析式为y=-x+6,
由,解得,
∴C(3,3).
(3)如图3中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.
∵∠FD′G=∠D′GF=63°,
∴△D′FG是等边三角形,
∵S△D′FG=,
∴D′G=,
∴DD′=GD′=3,
∴D′(3,3),
∵C(3,3),
∴CD′==3,
在Rt△PHB中,∵∠PHB=93°,∠PBH=33°,
∴PH=PB,
∴CD'+D'P+PB=3+D′P+PH≤3+D′O′=3+3,
∴CD'+D'P+PB的最小值为3+3.
(3)如图3-1中,当D3H⊥GH时,连接ED3.
∵ED=ED3,EG=EG.DG=D3G,
∴△EDG≌△ED3G(SSS),
∴∠EDG=∠ED3G=33°,∠DEG=∠D3EG,
∵∠DEB=133°,∠A′EO′=63°,
∴∠DEG+∠BEO′=63°,
∵∠D3EG+∠D3EO′=63°,
∴∠D3EO′=∠BEO′,
∵ED3=EB,E=EH,
∴△EO′D3≌△EO′B(SAS),
∴∠ED3H=∠EBH=33°,HD3=HB,
∴∠CD3H=63°,
∵∠D3HG=93°,
∴∠D3GH=33°,设HD3=BH=x,则DG=GD3=3x,GH=x,
∵DB=1,
∴3x+x+x=1,
∴x=3-3.
如图3-3中,当∠D3GH=93°时,同法可证∠D3HG=33°,易证四边形DED3H是等腰梯形,
∵DE=ED3=DH=1,可得D3H=1+3×1×cos33°=1+1.
如图3-3中,当D3H⊥GH时,同法可证:∠D3GH=33°,
在△EHD3中,由∠D3HE=15°,∠HD3E=33°,ED3=1,可得D3H=1×,
如图3-1中,当DG⊥GH时,同法可得∠D3HG=33°,
设DG=GD3=x,则HD3=BH=3x,GH=x,
∴3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年汽车ABS传感器项目立项申请报告模板
- 2024-2025学年温州市永嘉县数学三上期末预测试题含解析
- 电厂个人自我鉴定6篇
- 教师节活动策划书(15篇)
- 买卖合同模板汇编五篇
- 设计师工作总结集合15篇
- 学校防溺水工作方案15篇
- 2024年智能汽车研发与生产合同
- 2024年版5G网络建设与运营协议
- 自我鉴定范文100字左右10篇
- 乐山市市中区2022-2023学年七年级上学期期末地理试题【带答案】
- 两人合伙人合作协议合同
- 苏教版一年级上册数学期末测试卷含答案(完整版)
- 2023年广东省普通高中数学学业水平合格性考试真题卷含答案
- DZ/T 0462.5-2023 矿产资源“三率”指标要求 第5部分:金、银、铌、钽、锂、锆、锶、稀土、锗(正式版)
- 生殖与衰老课件
- 注塑车间工作总结
- 2024春期国开电大本科《城市管理学》在线形考(形考任务1至4)试题及答案
- 综合英语智慧树知到期末考试答案2024年
- 教师教学风格对小学生学习习惯形成的影响-(毕业论文)
- 经典蓝色商务商业模板
评论
0/150
提交评论