版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江绍兴市越城区数学八年级第二学期期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的表示的数为()
A.(2,0) B.(,0) C.(,0) D.(,0)2.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,CD⊥AB于D,则CD的长是()A.5 B.7 C. D.3.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A. B. C. D.4.如图,把线段AB经过平移得到线段CD,其中A,B的对应点分别为C,D.已知A(﹣1,0),B(﹣2,3),C(2,1),则点D的坐标为()A..(1,4) B..(1,3) C..(2,4) D..(2,3)5.若不等式组恰有两个整数解,则a的取值范围是()A.-1≤a<0 B.-1<a≤0 C.-1≤a≤0 D.-1<a<06.多项式m2﹣4与多项式m2﹣4m+4的公因式是()A.m﹣2 B.m+2 C.m+4 D.m﹣47.下列约分计算结果正确的是()A. B. C. D.8.若,则的值用、可以表示为()A. B. C. D.9.计算的结果为()A.2 B.-4 C.4 D.±410.已知是关于的方程的两个实数根,且满足,则的值为()A.3 B.3或 C.2 D.0或2二、填空题(每小题3分,共24分)11.如图,折线ABC是某市在2018年乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图像,观察图像回答,乘客在乘车里程超过3千米时,每多行驶1km,要再付费__________元.12.不等式2x-1>x解集是_________.13.若把分式中的x,y都扩大5倍,则分式的值____________.14.如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚和交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使=3,=3),然后张开两脚,使、两个尖端分别在线段l的两端上,若=2,则的长是_________.15.已知关于x的方程有两个不相等的实数根,则a的取值范围是_____________.16.已知,点P在轴上,则当轴平分时,点P的坐标为______.17.如图,在菱形ABCD中,AC、BD交于点O,BC=5,若DE∥AC,CE∥BD,则OE的长为_____.18.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.三、解答题(共66分)19.(10分)4月12日华为新出的型号为“P30Pro”的手机在上海召开发布会,某华为手机专卖网店抓住商机,购进10000台“P30Pro”手机进行销售,每台的成本是4400元,在线同时向国内、国外发售.第一个星期,国内销售每台售价是5400元,共获利100万元,国外销售也售出相同数量该款手机,但每台成本增加400元,获得的利润却是国内的6倍.(1)求该店销售该款华为手机第一个星期在国外的售价是多少元?(2)受中美贸易战影响,第二个星期,国内销售每台该款手机售价在第一个星期的基础上降低m%,销量上涨5m%;国外销售每台售价在第一个星期的基础上上涨m%,并且在第二个星期将剩下的手机全部卖完,结果第二个星期国外的销售总额比国内的销售总额多6993万元,求m的值.20.(6分)先化简,再求值:(﹣)÷,其中x=+1,y=﹣1.21.(6分)如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.22.(8分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.23.(8分)已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积;(3)求不等式kx+b-<0的解集(直接写出答案).24.(8分)如图,直线分别交x轴、y轴于A、B两点,直线BC与x轴交于点,P是线段AB上的一个动点点P与A、B不重合.(1)求直线BC所对应的的函数表达式;(2)设动点P的横坐标为t,的面积为S.①求出S与t的函数关系式,并写出自变量t的取值范围;②在线段BC上存在点Q,使得四边形COPQ是平行四边形,求此时点Q的坐标.25.(10分)问题:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有1+3=2边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有1+3+5=32=9探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.26.(10分)某校师生去外地参加夏令营活动,车票价格为每人100元,车站提出两种车票价格的优惠方案供学校选择.第一种方案是教师按原价付款,学生按原价的78%付款;第二种方案是师生都按原价的80%付款.该校参加这项活动的教师有5名,学生有x名.(1)设购票付款为y元,请写出y与x的关系式.(2)请根据夏令营的学生人数,选择购票付款的最佳方案?
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】首先根据勾股定理计算出AC的长,进而得到AM的长,再根据A点表示-1,可得M点表示的数.解:AC=,
则AM=,
∵A点表示-1,
∴M点表示的数为:-1,
故选C.“点睛”此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.2、C【解题分析】
首先利用勾股定理计算出AB的长,再根据三角形的面积公式计算出CD的长即可.【题目详解】解:∵在Rt中,∠ACB=90°,AC=4,BC=3,∴AB=∵×AC×BC=×CD×AB,∴×3×4=×5×CD,解得:CD=.故选.【题目点拨】本题主要考查了勾股定理,以及三角形的面积,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和等于斜边长的平方.3、B【解题分析】分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;
故选B.点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键.4、A【解题分析】
根据点A、C的坐标确定出平移规律,然后根据规律求解点D的坐标即可.【题目详解】∵A(﹣1,0)的对应点C的坐标为(2,1),∴平移规律为横坐标加3,纵坐标加1,∵点B(﹣2,3)的对应点为D,∴D的坐标为(1,4).故选A.【题目点拨】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.5、A【解题分析】
首先解不等式组求得不等式组的解集,然后根据不等式组有两个整数解即可确定整数解,从而得到关于a的不等式,求得a的范围.【题目详解】,解①得x<1,解②得x>a-1,则不等式组的解集是a-1<x<1.又∵不等式组有两个整数解,∴整数解是2,-1.∴-2≤a-1-<-1,解得:-1≤a<2.故选A.【题目点拨】本题考查了不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6、A【解题分析】
根据公因式定义,对各选项整理然后即可选出有公因式的项.【题目详解】解:m2-4=(m+2)(m-2),m2-4与多项式m2故选:A.【题目点拨】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“-1”.7、C【解题分析】
根据约分的定义逐项分析即可,根据分式的基本性质把分子、分母中除1以外的公因式约去,叫做分式的约分.【题目详解】A.的分子与分母没有公因式,不能约分,故不正确;B.的分子与分母没有公因式,不能约分,故不正确;C.,故正确;D.,故不正确;故选C.【题目点拨】本题考查了分式的约分,熟练掌握分式的基本性质是解答本题的关键.8、C【解题分析】
根据化简即可.【题目详解】=.故选C.【题目点拨】此题的关键是把写成的形式.9、C【解题分析】
根据算术平方根的定义进行计算即可.【题目详解】解:=4,故选C.【题目点拨】本题主要考查了算术平方根的定义,掌握算术平方根的定义是解题的关键.10、A【解题分析】
根据根与系数的关系得出m+n=-(2b+3),mn=b2,变形后代入,求出b值,再根据根的判别式判断即可.【题目详解】解:∵m,n是关于x的方程x2+(2b+3)x+b2=0的两个实数根,
∴m+n=-(2b+3),mn=b2,
∵+1=-,
∴+=-1,
∴=-1,
∴=-1,
解得:b=3或-1,
当b=3时,方程为x2+9x+9=0,此方程有解;
当b=-1时,方程为x2+x+1=0,△=12-4×1×1=-3<0,此时方程无解,
所以b=3,
故选:A.【题目点拨】本题考查一元二次方程的解,根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键.二、填空题(每小题3分,共24分)11、1.1【解题分析】分析:由图象可知,出租车行驶距离超过3km时,车费开始增加,而且行驶距离增加5km,车费增加7元,由此可解每多行驶1km要再付的费用.详解:由图象可知,出租车行驶距离超过3km时,车费开始增加,而且行驶距离增加5km,车费增加7元,所以,每多行驶1km要再付费7÷5=1.1(元).故答案为1.1.点睛:本题考查了函数图象问题,解题的关键是理解函数图象的意义.12、x>1【解题分析】
将不等式未知项移项到不等式左边,常数项移项到方程右边,合并后将x的系数化为1,即可求出原不等式的解集.【题目详解】解:2x-1>x,
移项得:2x-x>1,
合并得:x>1,
则原不等式的解集为x>1.
故答案为:x>1【题目点拨】此题考查了一元一次不等式的解法,解一元一次不等式的步骤为:去分母,去括号,移项,合并同类项,将x的系数化为1求出解集.13、扩大5倍【解题分析】【分析】把分式中的x和y都扩大5倍,分别用5x和5y去代换原分式中的x和y,利用分式的基本性质化简即可.【题目详解】把分式中的x,y都扩大5倍得:=,即分式的值扩大5倍,故答案为:扩大5倍.【题目点拨】本题考查了分式的基本性质,根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项.14、6【解题分析】∵OA=3OD,OB=3OC,∴,∵AD与BC相交于点O,∴∠AOB=∠DOC,∴△AOB∽△DOC,∴,∵CD=2,∴.故本题应填写:6.15、且【解题分析】
由题意可知方程根的判别式△>0,于是可得关于a的不等式,解不等式即可求出a的范围,再结合二次项系数不为0即得答案.【题目详解】解:根据题意,得:,且,解得:且.故答案为:且.【题目点拨】本题考查了一元二次方程的根的判别式和一元一次不等式的解法,属于基本题型,熟练掌握一元二次方程根的判别式和方程根的个数之间的关系是解题的关键.16、【解题分析】
作点A关于y轴对称的对称点,求出点的坐标,再求出直线的解析式,将代入直线解析式中,即可求出点P的坐标.【题目详解】如图,作点A关于y轴对称的对称点∵,点A关于y轴对称的对称点∴设直线的解析式为将点和点代入直线解析式中解得∴直线的解析式为将代入中解得∴故答案为:.【题目点拨】本题考查了坐标点的问题,掌握角平分线的性质、轴对称的性质、一次函数的性质是解题的关键.17、1【解题分析】
由菱形的性质可得BC=CD=1,AC⊥BD,由题意可证四边形ODEC是矩形,可得OE=CD=1.【题目详解】解:∵四边形ABCD是菱形,∴BC=CD=1,AC⊥BD,∵DE∥AC,CE∥BD,∴四边形ODEC是平行四边形,且AC⊥BD,∴四边形ODEC是矩形,∴OE=CD=1,故答案为1.【题目点拨】本题考查了菱形的性质,矩形的判定和性质,证明四边形ODEC是矩形是解题的关键.18、1.【解题分析】在Rt△ABC中,AB=5米,BC=3米,∠ACB=90°,
∴AC=∴AC+BC=3+4=1米.
故答案是:1.三、解答题(共66分)19、(1)1800元;(2)m=1.【解题分析】
(1)根据(国外的售价-成本)×销售的数量=国内的6倍,列方程解出即可;(2)根据第二个星期国外的销售总额-国内的销售总额=6993万元,利用换元法解方程可解答.【题目详解】解:(1)设该店销售该款华为手机第一个星期在国外的售价是x元,根据题意得:•[x-(4400+400)]=6×10,x=1800,答:该店销售该款华为手机第一个星期在国外的售价是1800元;(2)第一个星期国内销售手机的数量为:=100(台),由题意得:1800(1+m%)×[1000-2000-100(1+5m%)]-5400(1-m%)×100(1+5m%)=69930000,1800(1+m%)(7000-5000m%)-5400×100(1-m%)(1+5m%)=69930000,180(1+m%)(7-5m%)-540(1-m%)(1+5m%)=6993,设m%=a,则原方程化为:180(1+a)(7-5a)-540(1-a)(1+5a)=6993,360(1+a)(7-5a)-180(1-a)(1+5a)=2331,a2=0.01,a=0.1或-0.1(舍),∴m=1.【题目点拨】本题主要考查了手机销售的应用问题,涉及到一元二次方程、一元一次方程应用等知识,弄清题意,找出数量关系是解决问题的关键.20、原式==【解题分析】分析:首先将分式进行通分,然后根据除法的计算法则进行约分化简,最后将x和y的值代入化简后的式子进行计算得出答案.详解:解:原式=,当x=+1,y=﹣1时,原式=.点睛:本题主要考查的就是分式的化简求值以及二次根式的计算,属于简单题型.在解答这个问题的时候,明确分式的化简法则是基础.21、证明:(1)见解析(2)见解析【解题分析】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠ABF=∠ECF.∵EC=DC,∴AB=EC.在△ABF和△ECF中,∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,∴△ABF≌△ECF.(2)证法一:由(1)知AB=EC,又AB∥EC,∴四边形ABEC是平行四边形.∴AF=EF,BF=CF.∵四边形ABCD是平行四边形,∴∠ABC=∠D,又∵∠AFC=2∠D,∴∠AFC=2∠ABC.∵∠AFC=∠ABF+∠BAF,∴∠ABF=∠BAF.∴FA=FB.∴FA=FE=FB=FC,∴AE=BC.∴□ABEC是矩形.证法二:由(1)知AB=EC,又AB∥EC,∴四边形ABEC是平行四边形.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠BCE.又∵∠AFC=2∠D,∴∠AFC=2∠BCE.∵∠AFC=∠FCE+∠FEC,∴∠FCE=∠FEC.∴∠D=∠FEC.∴AE=AD.又∵CE=DC,∴AC⊥DE,即∠ACE=90°.∴□ABEC是矩形.22、(1)75;4;(2)CD=4.【解题分析】
(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【题目详解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴.又∵AO=3,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴.∵BO:OD=1:3,∴.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=1.在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,解得:CD=4.【题目点拨】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.23、(1)反比例函数关系式:;一次函数关系式:y=1x+1;(1)3;(3)x<-1或0<x<1.【解题分析】分析:(1)由B点在反比例函数y=上,可求出m,再由A点在函数图象上,由待定系数法求出函数解析式;(1)由上问求出的函数解析式联立方程求出A,B,C三点的坐标,从而求出△AOC的面积;(3)由图象观察函数y=的图象在一次函数y=kx+b图象的上方,对应的x的范围.详解:(1)∵B(1,4)在反比例函数y=上,∴m=4,又∵A(n,-1)在反比例函数y=的图象上,∴n=-1,又∵A(-1,-1),B(1,4)是一次函数y=kx+b的上的点,联立方程组解得,k=1,b=1,∴y=,y=1x+1;(1)过点A作AD⊥CD,∵一次函数y=kx+b的图象和反比例函数y=的图象的两个交点为A,B,联立方程组解得,A(-1,-1),B(1,4),C(0,1),∴AD=1,CO=1,∴△AOC的面积为:S=AD•CO=×1×1=1;(3)由图象知:当0<x<1和-1<x<0时函数y=的图象在一次函数y=kx+b图象的上方,∴不等式kx+b-<0的解集为:0<x<1或x<-1.点睛:此题考查一次函数和反比例函数的性质及图象,考查用待定系数法求函数的解析式,还间接考查函数的增减性,从而来解不等式.24、(1)y=2x+1;(2)①S=-2t+2(0<t<1);②点Q的坐标为(,).【解题分析】
(1)根据函数表达式求出点B坐标,结合点C坐标求出BC的表达式;(2)①根据三角形面积求法可得S与t的表达式;②过点P作PQ∥x轴,交BC于点Q,得出P和Q的坐标,利用平行四边形的性质建立方程求解即可.【题目详解】解:(1)直线y=-x+1与x轴、y轴交点坐标分别为A(1,0)、B(0,1)两点.设直线BC所对应的函数关系式为y=kx+1.∵直线BC经过点C(-2,0),∴-2k+1=0,解得:k=2,∴直线BC所对应的函数关系式为y=2x+1.(2)①由题意,设点P的坐标为(t,-t+1),∴S=S△POA=×OA×yP=×1×(-t+1)=-2t+2.即S=-2t+2(0<t<1).②过点P作PQ∥x轴,交BC于点Q.∵点P的坐标为(t,-t+1),∴点Q的坐标为(,-t+1).∵四边形COPQ是平行四边形,∴PQ=OC,即.解得:t=,∴点Q的坐标为(,).【题目点拨】本题考查了一次函数的应用,求一次函数表达式,平行四边形的性质,解题的关键是画出图形,借助平行四边形的性质解题.25、探究三:16,6;结论:n²,n(n-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024幼儿园建设项目节能灯具供应与施工合同3篇
- 2024年铁路、水路货物运输联合保险单
- 2025年度智慧旅游平台建设合同3篇
- 2025年度智能房产交易财产保全申请书范本3篇
- 2024年运动场改造项目施工废弃物处理合同3篇
- 2024年起重机租赁及安装指导合同3篇
- 2024年高端装备维修与技术保障服务合同
- 2024年绿色建筑地产项目前期策划及环保评估合同2篇
- 2025年度新能源设备承揽工程合同范本2篇
- 2024年蒸压加气混凝土砌块广告宣传与推广合同
- 2025年中国CAR-T免疫细胞治疗行业市场发展前景研究报告-智研咨询发布
- 2024-2025学年陕旅版英语五年级上册期末质量检测5(含答案含听力原文无音频)
- 民宿承包协议书2025年
- YY/T 1409-2016等离子手术设备
- 设计风速、覆冰的基准和应用
- 水果深加工项目商业计划书范文参考
- 基于单片机的室内环境检测系统设计开题报告
- 爱丽丝梦游仙境话剧中英文剧本
- 中英文验货报告模板
- 五年级上册人教版数学脱式计算题五年级上册脱式计算,解方程,应用题
- 东汪镇中学对标活动实施实施方案
评论
0/150
提交评论