2024届湖北省武汉市六中学八年级数学第二学期期末学业质量监测试题含解析_第1页
2024届湖北省武汉市六中学八年级数学第二学期期末学业质量监测试题含解析_第2页
2024届湖北省武汉市六中学八年级数学第二学期期末学业质量监测试题含解析_第3页
2024届湖北省武汉市六中学八年级数学第二学期期末学业质量监测试题含解析_第4页
2024届湖北省武汉市六中学八年级数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省武汉市六中学八年级数学第二学期期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.不等式组中的两个不等式的解集在数轴上表示为()A. B.C. D.2.小杨同学五次数学小测成绩分别是91分、95分、85分、95分、100分,则小杨这五次成绩的众数和中位数分别是()A.95分、95分 B.85分、95分C.95分、85分 D.95分、91分3.若式子在实数范围内有意义,则x的取值范围是A.x≥3 B.x≤3 C.x>3 D.x<34.如图,在中,,,则的度数是()A. B. C. D.5.将四根长度相等的细木条首尾顺次相接,用钉子钉成四边形ABCD,转动这个四边形可以使它的形状改变.当∠B=60°时,如图(1),测得AC=2;当∠B=90°时,如图(2),此时AC的长为()A. B.2 C. D.6.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,则点C的纵坐标y与x的函数解析式是()A.y=x B.y=1﹣x C.y=x+1 D.y=x﹣17.如图,在矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,使点D落在E处,CE交AB于点O,若BO=3m,则AC的长为()A.6cm B.8cm C.5cm D.4cm8.已知等腰三角形有两条边的长分别是3,7,则这个等腰三角形的周长为()A.17 B.13 C.17或13 D.109.五边形的内角和是()A.180° B.360° C.540° D.720°10.某单位向一所希望小学赠送1080件文具,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设B型包装箱每个可以装x件文具,根据题意列方程为A. B.C. D.11.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④ B.①③④ C.①②④ D.①②③12.直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A. B. C. D.二、填空题(每题4分,共24分)13.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AB=5,则BC=_____.14.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S甲2=2,S乙2=1.5,则射击成绩较稳定的是_____________(填“甲”或“乙“).15.2019年6月12日,重庆直达香港高铁的车票正式开售据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高在此之前技术部门做了大量测试,在一次测试中一高铁列车从地出发匀速驶向地,到达地停止;同时一普快列车从地出发,匀速驶向地,到达地停止且,两地之间有一地,其中,如图①两列车与地的距离之和(千米)与普快列车行驶时间(小时)之间的关系如图②所示则高铁列车到达地时,普快列车离地的距离为__________千米.16.如图,已知矩形ABCD,AB在y轴上,AB=2,BC=3,点A的坐标为(0,1),在AD边上有一点E(2,1),过点E的直线与BC交于点F.若EF平分矩形ABCD的面积,则直线EF的解析式为________.17.已知点关于轴的对称点为,且在直线上,则____.18.如图,中,对角线相交于点,,若要使平行四边形为矩形,则的长度是__________.三、解答题(共78分)19.(8分)已知一次函数y=kx+b的图象与y=3x的图象平行,且经过点(﹣1,1),求这个一次函数的关系式,并求当x=5时,对应函数y的值.20.(8分)如图,要从一块的白铁皮零料上截出一块矩形白铁皮.已知,,要求截出的矩形的长与宽的比为,且较长边在上,点分别在上,所截矩形的长和宽各是多少?21.(8分)若关于x、y的二元一次方程组的解满足x+y>0,求m的取值范围.22.(10分)某车行经销的A型自行车去年6月份销售总额为1.6万元,今年由于改造升级每辆车售价比去年增加200元,今年6月份与去年同期相比,销售数量相同,销售总额增加25%.今年A,B两种型号车的进价和售价如下表:

(1)求今年A型车每辆售价多少元?

(2)该车行计划7月份用不超过4.3万元的资金新进一批A型车和B型车共50辆,应如何进货才能使这批车售完后获利最多?23.(10分)如图,正方形的对角线交于点,直角三角形绕点按逆时针旋转,(1)若直角三角形绕点逆时针转动过程中分别交两边于两点①求证:;②连接,那么有什么样的关系?试说明理由(2)若正方形的边长为2,则正方形与两个图形重叠部分的面积为多少?(不需写过程直接写出结果)24.(10分)某旅游风景区,门票价格为a元/人,对团体票规定:10人以下(包括10人)不打折,10人以上超过10人部分打b折.设团体游客人,门票费用为y元,y与x之间的函数关系如图所示.(1)填空:a=_______;b=_________.(2)请求出:当x>10时,与之间的函数关系式;(3)导游小王带A旅游团到该景区旅游,付门票费用2720元(导游不需购买门票),求A旅游团有多少人?25.(12分)如图,矩形OBCD位于直角坐标系中,点B(,0),点D(0,m)在y轴正半轴上,点A(0,1),BE⊥AB,交DC的延长线于点E,以AB,BE为边作▱ABEF,连结AE.(1)当m=时,求证:四边形ABEF是正方形.(2)记四边形ABEF的面积为S,求S关于m的函数关系式.(3)若AE的中点G恰好落在矩形OBCD的边上,直接写出此时点F的坐标.26.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,到达目的地后停止,设慢车行驶时间为小时,两车之间的距离为千米,两者的关系如图所示,根据图象探究:(1)看图填空:两车出发小时,两车相遇;(2)求快车和慢车的速度;(3)求线段所表示的与的关系式,并求两车行驶小时两车相距多少千米.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【题目详解】不等式组,解得:,解得:,∴不等式组的解集为:,故选:C.【题目点拨】本题考查了不等式组的解法和在数轴上表示不等式组的解集.需要注意的是:如果是表示大于或小于号的点要用空心圆圈,如果是表示大于等于或小于等于号的点要用实心圆点.2、A【解题分析】

中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【题目详解】解:95分出现次数最多,所以众数为95分;排序为:85,91,95,95,100所以中位数为95,故选:.【题目点拨】考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.3、A【解题分析】分析:根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.故选A.4、B【解题分析】

由三角形内角和得到∠CBD的度数,由AD∥BC即可得到答案.【题目详解】解:∵,,∴∠CBD=180°-50°-55°=75°,在中,AD∥BC,∴∠ADB=∠CBD=75°.故选择:B.【题目点拨】本题考查了三角形内角和,平行线的性质,解题的关键是熟练掌握三角形内角和与平行线的性质.5、A【解题分析】

根据图1中一个角为60°的等腰三角形可得三角形ABC为等边三角形:AC=BC=2;再图2中由勾股定理可求出AC的长即可.【题目详解】解:如图1,∵AB=AC,且∠ABC=60°,∴三角形ABC为等边三角形,AB=AC=BC=2;如图2,三角形ABC为等腰直角三角形,由勾股定理得:,即:,故选:A.【题目点拨】本题考查了等腰直角三角形的性质,勾股定理以及等边三角形的判定和性质,利用勾股定理得出斜边AC的长度是解题的关键.6、C【解题分析】

过点C作CE⊥y轴于点E,只要证明△CEA≌△AOB(AAS),即可解决问题;【题目详解】解:过点C作CE⊥y轴于点E.∵∠CEA=∠CAB=∠AOB=90°,∴∠EAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠EAC=∠ABO,∵AC=AB,∴△CEA≌△AOB(AAS),∴EA=OB=x,CE=OA=1,∵C的纵坐标为y,OE=OA+AD=1+x,∴y=x+1.故选:C.【题目点拨】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7、D【解题分析】

根据折叠前后角相等可证AO=CO,在直角三角形CBO中,运用勾股定理求得CO,再根据线段的和差关系和勾股定理求解即可.【题目详解】根据折叠前后角相等可知∠DCA=∠ACO,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=4cm,∴∠DCA=∠CAO,∴∠ACO=∠CAO,∴AO=CO,在直角三角形BCO中,CO==5cm,∴AB=CD=AO+BO=3+5=8cm,在Rt△ABC中,AC=cm,故选:D.【题目点拨】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.8、A【解题分析】

分3是腰长与底边两种情况讨论求解.【题目详解】解:①3是腰长时,三角形的三边分别为7、3、3,3+3=6<7,不能组成三角形;②3是底边长时,三角形的三边分别为7、7、3,能组成三角形,周长=7+7+3=17,综上所述,这个等腰三角形的周长是17,故选:A.【题目点拨】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.9、C【解题分析】

根据n边形的内角和为:,且n为整数,求出五边形的内角和是多少度即可.【题目详解】解:五边形的内角和是:(5﹣2)×180°=3×180°=540°故选:C.【题目点拨】此题主要考查了多边形的内角和定理,要熟练掌握,解答此题的关键是要明确n边形的内角和为:,且n为整数.10、A【解题分析】

关键描述语:单独使用B型包装箱比单独使用A型包装箱可少用12个;可列等量关系为:所用B型包装箱的数量=所用A型包装箱的数量-12,由此可得到所求的方程.【题目详解】解:根据题意,得:故选:A.【题目点拨】此题考查分式方程的问题,关键是根据公式:包装箱的个数与文具的总个数÷每个包装箱装的文具个数是等量关系解答.11、C【解题分析】

根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.【题目详解】①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2,a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,考点:(1)、因式分解的应用;(2)、整式的混合运算;(3)、二次函数的最值12、B【解题分析】

若y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,可对A、D进行判断;若y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,则可对B、C进行判断.【题目详解】A、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以A选项错误;B、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以B选项正确;C、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以C选项错误;D、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以D选项错误.故选B.【题目点拨】本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).二、填空题(每题4分,共24分)13、5;【解题分析】

根据矩形性质得出AC=2AO,BD=2BO,AC=BD,推出AO=OB,得出等边三角形AOB,利用勾股定理即可得出答案.【题目详解】∵四边形ABCD是矩形,∴AC=BD,AC=2AO,BD=2BO,∠ABC=90°,∴AO=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=5,∴AC=2AO=10,在Rt△ABC中,由勾股定理得,BC=.故答案为:5.【题目点拨】本题考查了矩形的性质及勾股定理.根据矩形的性质及∠AOB=60°得出△AOB是等边三角形是解题的关键.14、乙【解题分析】

直接根据方差的意义求解.方差通常用s2来表示,计算公式是:s2=[(x1-x¯)2+(x2-x¯)2+…+(xn-x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【题目详解】解:∵S甲2=2,S乙2=1.5,∴S甲2>S乙2,∴乙的射击成绩较稳定.故答案为:乙.【题目点拨】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.15、1【解题分析】

由图象可知4.5小时两列车与C地的距离之和为0,于是高铁列车和普快列车在C站相遇,由于AC=2BC,因此高铁列车的速度是普快列车的2倍,相遇后图象的第一个转折点,说明高铁列车到达B站,此时两车距C站的距离之和为1千米,由于V高铁=2V普快,因此BC距离为1千米的三分之二,即240千米,普快离开C占的距离为1千米的三分之一,即120千米,于是可以得到全程为240+240×2=720千米,当高铁列车到达B站时,普快列车离开B站240+120=1千米,此时距A站的距离为720-1=1千米.【题目详解】∵图象过(4.5,0)

∴高铁列车和普快列车在C站相遇

∵AC=2BC,

∴V高铁=2V普快,

BC之间的距离为:1×=240千米,全程为AB=240+240×2=720千米,

此时普快离开C站1×=120千米,

当高铁列车到达B站时,普快列车距A站的距离为:720-120-240=1千米,

故答案为:1.【题目点拨】此题考查一次函数的应用.解题关键是由函数图象得出相关信息,明确图象中各个点坐标的实际意义.联系行程类应用题的数量关系是解决问题的关键,图象与实际相结合容易探求数量之间的关系,也是解决问题的突破口.16、y=2x-3.【解题分析】

根据题意可得点B的坐标为(0,-1),AE=2,根据EF平分矩形ABCD的面积,先求出点F的坐标,再利用待定系数法求函数解析式即可.【题目详解】∵AB=2,点A的坐标为(0,1),∴OB=1,∴点B坐标为(0,-1),∵点E(2,1),∴AE=2,ED=AD-AE=1,∵EF平分矩形ABCD的面积,∴BF=DE,∴点F的坐标为(1,-1),设直线EF的解析式为y=kx+b,将点E和点F的坐标代入可得,∴1=2k+b解得k=2,b=-3∴EF的解析式为y=2x-3.故答案为:y=2x-3.【题目点拨】本题考查了矩形的性质和待定系数法求一次函数解析式,正确求得点F的坐标为(1,-1)是解决问题的关键.17、【解题分析】

根据点P的坐标可求出点P′的坐标,再利用一次函数图象上点的坐标特征可得到关于k的一元一次方程,解之即可求出k值.【题目详解】解:∵点关于轴的对称点为∴点P'的坐标为(1,-2)∵点P'在直线上,∴-2=k+3解得:k=-5,故答案为:-5.【题目点拨】本题考查了一次函数图象上点的坐标特征,关于x轴、y轴对称的点的坐标,掌握待定系数法求一次函数解析式是解题的关键.18、【解题分析】

根据矩形的性质得到OA=OC=OB=OD,可得出结果.【题目详解】解:假如平行四边形ABCD是矩形,

∴OA=OC=OB=OD,

∵OA=3,∴BD=2OB=1.

故答案为:1.【题目点拨】本题主要考查了矩形的性质,平行四边形的性质等知识点的理解和掌握.三、解答题(共78分)19、当x=5时,y=3×5+6=1.【解题分析】

根据两平行直线的解析式的k值相等求出k,然后把经过的点的坐标代入解析式计算求出b值,即可得解.【题目详解】解:∵一次函数y=kx+b的图象平行于直线y=3x,∴k=3,∴y=3x+b把点(﹣1,1)代入得,3=﹣1×3+b,解得b=6,所以,一次函数的解析式为,y=3x+6,当x=5时,y=3×5+6=1.【题目点拨】本题考查了两直线平行的问题,根据平行直线解析式的k值相等求出k值是解题的关键,也是本题的突破口.20、所截矩形的长是,宽是【解题分析】

过点作交于,交于,先利用勾股定理求出BC,易知,从而求出AN,又易证,,设,则,列出方程解出x即可【题目详解】解:过点作交于,交于四边形是矩形设,则解得:答:所截矩形的长是,宽是.【题目点拨】本题主要考查相似三角形的应用,在实际问题中抽象出几何图形,本题解题关键在于能够找到相似三角形列出方程21、m>﹣1【解题分析】

两方程相加可得x+y=m+1,根据题意得出关于m的方程,解之可得.【题目详解】解:将两个方程相加即可得1x+1y=1m+4,则x+y=m+1,根据题意,得:m+1>0,解得m>﹣1.【题目点拨】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22、(1)型车每辆售价为1000元;(2)型车30辆、型车20辆,获利最多.【解题分析】

(1)设今年型车每辆售价为元,则去年型车每辆售价为元,根据数量总价单价结合今年6月份与去年同期相比销售数量相同,即可得出关于的分式方程,解之经检验后即可得出结论;(2)设购进型车辆,则购进型车辆,根据总价单价数量结合总费用不超过4.3万元,即可得出关于的一元一次不等式,解之即可得出的取值范围,再根据销售利润单辆利润购进数量即可得出销售利润关于的函数关系式,利用一次函数的性质解决最值问题即可.【题目详解】解:(1)设今年型车每辆售价为元,则去年型车每辆售价为元,根据题意得:,解得:,经检验,是原分式方程的解.答:今年型车每辆售价为1000元.(2)设购进型车辆,则购进型车辆,根据题意得:,解得:.销售利润为,,当时,销售利润最多.答:当购进型车30辆、购进型车20辆时,才能使这批车售完后获利最多.【题目点拨】本题考查了分式方程的应用、一次函数的最值以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,找出销售利润关于的函数关系式.23、(1)①见解析;②垂直且相等,理由见解析;(2)面积为1。【解题分析】

(1)①证出△DOM≌∠CON,证出;②证明△MDC≌△BCN得CM=BN,证明△GCN∽△MDC得BN⊥CM;(2)因为△DOM≌∠CON,所以正方形与两个图形重叠部分为△DOC的面积.【题目详解】(1)①∵正方形的对角线交于点∴∠ADO=∠ACDOD=OC∠DOC=90°②∵∠DOC=90°∴∠MOD+∠DON=90°,∠NOD+∠CON=90°∴∠DOM=∠CON∵∠DOM=∠CON∠ADO=∠ACDOD=OC∴△DOM≌∠CON∴②设BN交CM于点G∵正方形ABCD∴DC=BC∠ADC=∠DCB∵△DOM≌∠CON∴DM=CN∴△MDC≌△BCN∴CM=BN∠CMD=∠BNC∵∠CMD=∠BNC∠MCD=∠MCD∴△GCN∽△MDC∴∠NGC=∠ADC∴BN⊥CM∴垂直且相等(2)面积为1.【题目点拨】本题考查的是图形的旋转和全等,熟练掌握全等三角形和相似三角形是解题的关键.24、(1)80;8(2)y=64x+160;(3)40人【解题分析】分析:(1)根据函数图象可以求得a、b的值;(2)根据函数图象可以求得当x>10时,y与x之间的函数关系式;(3)根据(2)中的解析式可以求得A旅游团的人数.详解:(1)由图象可知,a=800÷10=80,b=×10=8,故答案为:80,8;(2)当x>10时,设y与x之间的函数关系式是y=kx+m,则,解得,,即当x>10时,y与x之间的函数关系式是y=64x+160;(3)∵2720>800,∴将y=2720代入y=64x+160,得2720=64x+160,解得,x=40,即A旅游团有40人.点睛:本题考查一次函数的应用,揭帖关键是明确题意,找出所求问题需要的条件.25、(1)证明见解析;(2)S=m(m>0);(3)满足条件的F坐标为(,2)或(,4).【解题分析】

(1)只要证明△ABO≌△CBE,可得AB=BE,即可解决问题;

(2)在Rt△AOB中利用勾股定理求出AB,证明△ABO∽△CBE,利用相似三角形的性质求出BE即可解决问题;

(3)分两种情形I.当点A与D重合时,II.当点G在BC边上时,画出图形分别利用直角三角形和等边三角形求解即可.【题目详解】解:(1)如图1中,∵m=,B(,0),∴D(0,),∴OD=OB=,∴矩形OBCD是正方形,∴BO=BC,∵∠OBC=∠ABE=90°,∴∠ABO=∠CBE,∵∠BOA=∠BC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论