![湖南省长沙市明徳旗舰2024届八年级数学第二学期期末学业质量监测模拟试题含解析_第1页](http://file4.renrendoc.com/view10/M00/00/17/wKhkGWXQ3EuAEX0NAAGwVgar5pI818.jpg)
![湖南省长沙市明徳旗舰2024届八年级数学第二学期期末学业质量监测模拟试题含解析_第2页](http://file4.renrendoc.com/view10/M00/00/17/wKhkGWXQ3EuAEX0NAAGwVgar5pI8182.jpg)
![湖南省长沙市明徳旗舰2024届八年级数学第二学期期末学业质量监测模拟试题含解析_第3页](http://file4.renrendoc.com/view10/M00/00/17/wKhkGWXQ3EuAEX0NAAGwVgar5pI8183.jpg)
![湖南省长沙市明徳旗舰2024届八年级数学第二学期期末学业质量监测模拟试题含解析_第4页](http://file4.renrendoc.com/view10/M00/00/17/wKhkGWXQ3EuAEX0NAAGwVgar5pI8184.jpg)
![湖南省长沙市明徳旗舰2024届八年级数学第二学期期末学业质量监测模拟试题含解析_第5页](http://file4.renrendoc.com/view10/M00/00/17/wKhkGWXQ3EuAEX0NAAGwVgar5pI8185.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长沙市明徳旗舰2024届八年级数学第二学期期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为()A.(-3,-4) B.(3,4) C.(-4,-3) D.(4,3)2.如图,以原点O为圆心,OB长为半径画弧与数轴交于点A,若点A表示的数为x,则x的值为()A.5 B.-5 C.5-2 D.2-53.9的算术平方根是()A.﹣3 B.±3 C.3 D.4.如图,已知点是线段的黄金分割点,且.若表示以为边的正方形面积,表示长为、宽为的矩形面积,则与的大小关系为()A. B. C. D.不能确定5.下列运算正确的是(
)A. B.=1C. D..6.如图,DC⊥AC于C,DE⊥AB于E,并且DE=DC,则下列结论中正确的是()A.DE=DF B.BD=FD C.∠1=∠2 D.AB=AC7.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC8.设、是方程的两根,则+=()A.-3 B.-1 C.1 D.39.点A(x1,y1),B(x2,y2)在反比例函数y=的图象上,当x1<0<x2时,y1>y2,则k的取值围是()A.k< B.k> C.k<2 D.k>210.一次函数y=kx-k(k<0)的图象大致是()A. B. C. D.二、填空题(每小题3分,共24分)11.已如边长为的正方形ABCD中,C(0,5),点A在x轴上,点B在反比例函数y=(x>0,m>0)的图象上,点D在反比例函数y=(x<0,n<0)的图象上,那么m+n=______.12.化简:.13.当x=2018时,的值为____.14.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠且高度恰好相同.此时测得墙上影子高CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知小明身高EF是1.6m,则楼高AB为______m.15.如图,点A是函数y=kx(x<0)的图像上的一点,过点A作AB⊥y轴,垂足为点B,点C为x轴上的一点,连接AC,BC,若△ABC的面积为4,则16.外角和与内角和相等的平面多边形是_______________.17.甲,乙,丙,丁四人参加射击测试,每人次射击的平均环数都为环,各自的方差见如下表格:甲乙丙丁方差则四个人中成绩最稳定的是______.18.如图,函数y=bx和y=ax+4的图象相交于点A(1,3),则不等式bx<ax+4的解集为________.三、解答题(共66分)19.(10分)铜仁市积极推动某公园建设,通过旅游带动一方经济,计划经过若干年使公园绿化总面积新增450万平方米.自2016年初开始实施后,实际每年绿化面积是原计划的1.5倍,这样可以提前3年完成任务.(1)求实际每年绿化面积是多少万平方米(2)为加大公园绿化力度,市政府决定从2019年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?20.(6分)直线AB:y=﹣x+b分别与x,y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.(1)求点B的坐标.(2)求直线BC的解析式.(3)直线EF的解析式为y=x,直线EF交AB于点E,交BC于点F,求证:S△EBO=S△FBO.21.(6分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)22.(8分)益群精品店以转件21元的价格购进一批商品,该商品可以白行定价,若每件商B品位价a元,可卖出(350-10a)件,但物价局限定每件商品的利润率不得超过20%,商店计划要盈利400元,求每件商品应定价多少元?23.(8分)(题文)如图,四边形ABCD中,AB//CD,AC平分∠BAD,CE//AD交AB于E.求证:四边形AECD是菱形.24.(8分)如图,已知是线段的中点,,且,试说明的理由.25.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,点E是BC上一点(不与点B,C重合),点M是AE上一点(不与点A,E重合),连接并延长CM交AB于点G,将线段CM绕点C按顺时针方向旋转90°,得到线段CN,射线BN分别交AE的延长线和GC的延长线于D,F.(1)求证:△ACM≌△BCN;(2)求∠BDA的度数;(3)若∠EAC=15°,∠ACM=60°,AC=+1,求线段AM的长.26.(10分)已知一次函数,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据图象回答:当______时,.
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】
根据点P所在象限先确定P点横纵坐标都是负数,根据P到x轴和y轴的距离确定点的坐标.【题目详解】解:∵点P(x,y)在第三象限,
∴P点横纵坐标都是负数,
∵P到x轴和y轴的距离分别为3、4,
∴点P的坐标为(-4,-3).
故选:C.【题目点拨】此题主要考查了点的坐标,关键是掌握到x轴的距离=纵坐标的绝对值,到y轴的距离=横坐标的绝对值.2、B【解题分析】
根据勾股定理列式求出x2,再利用平方根的相反数定义解答.【题目详解】由图可知,x2=12+22=5,
则x1=−5,x2=5(舍去).
故选:B.【题目点拨】考查了实数与数轴,主要是数轴上无理数的作法,需熟练掌握.3、C【解题分析】试题分析:9的算术平方根是1.故选C.考点:算术平方根.4、B【解题分析】
根据黄金分割的概念和正方形的性质知:BC2=AB•AC,变形后求解即可.【题目详解】∵C是线段AB的黄金分割点,且BC>AC,∴BC2=AB•AC,∴S1=BC2=AB•AC=S2,故选B.【题目点拨】此题主要是考查了线段的黄金分割点的概念,根据概念表示出三条线段的关系,再结合正方形的面积进行分析计算是解题关键.5、D【解题分析】【分析】根据二次根式加减法则进行分析.同类二次根式才可合并.【题目详解】A.,不是同类二次根式,不能合并,故本选项错误;B.=,故本选项错误;C.,不是同类二次根式,不能合并,故本选项错误;D..故本选项正确.故选:D【题目点拨】本题考核知识点:二次根式的加减.解题关键点:合并同类二次根式.6、C【解题分析】分析:如图,由已知条件判断AD平分∠BAC即可解决问题.详解:如图,∵DC⊥AC于C,DE⊥AB于E,且DE=DC,∴点D在∠BAC的角平分线上,∴∠1=∠1.故选C.点睛:该题主要考查了角平分线的判定及其性质的应用问题;牢固掌握角平分线的性质是解题的关键.7、C【解题分析】
通过构造相似三角形即可解答.【题目详解】解:根据题意可得在△ABC中△ABC∽△MNC,又因为M.N是AC,BC的中点,所以相似比为2:1,MN//AB,B正确,CM=AC,D正确.即AB=2MN=36,A正确;MN=AB,C错误.故本题选C.【题目点拨】本题考查相似三角形的判定与运用,熟悉掌握是解题关键.8、B【解题分析】
根据一元二次方程根与系数的关系解答即可.【题目详解】解:∵、是方程的两根,∴+=-1.故选:B【题目点拨】本题考查了一元二次方程根与系数的关系,若是一元二次方程的两个根,则.9、B【解题分析】
根据当x1<0<x2时,y1>y2可得双曲线在第二,四象限,1-2k<0,列出方程求解即可.【题目详解】解:∵A(x1,y1),B(x2,y2)在反比例函数y=的图象上,又∵x1<0<x2时,y1>y2,∴函数图象在二四象限,∴1﹣2k<0,∴k>,故选B.【题目点拨】本题考查了反比例函数图象上点的坐标特征,得出1-2k<0是关键,较为简单.10、A【解题分析】试题分析:首先根据k的取值范围,进而确定﹣k>0,然后再确定图象所在象限即可.解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限,故选A.考点:一次函数的图象.二、填空题(每小题3分,共24分)11、±5【解题分析】
由勾股定理可求点A坐标,分两种情况讨论,利用全等三角形的判定和性质求出B、D的坐标,即可求解.【题目详解】解:设点A(x,0)∴AC2=OA2+OC2,∴26=25+OA2,∴OA=1∴点A(1,0),或(-1,0)当点A(1,0)时,如图,过点B作BF⊥x轴,过点C作CE⊥y轴,与BF交于点E,过点D作DH⊥x轴,交CE于点G,∵∠CBE+∠ABF=90°,且∠CBE+∠ECB=90°∴∠ECB=∠ABF,且BC=AB,∠E=∠AFB=90°∴△ABF≌△BCE(AAS)∴BE=AF,BF=CE∵OF=OA+AF∴CE=OF=1+BE=BF∴BF+BE=1+BE+BE=5∴BE=2,∴BF=3∴点B坐标(3,3)∴m=3×3=9,∵A(1,0),C(0,5),B(3,3),∴点D(1+0-3,0+5-3),即(-2,2)∴n=-2×2=-4∴m+n=5若点A(-1,0)时,同理可得:B(2,2),D(-3,3),∴m=4,n=-9∴m+n=-5故答案为:±5【题目点拨】本题考查了反比例函数图象上点的坐标特征,正方形的性质,全等三角形的判定和性质,利用分类讨论思想解决问题和利用方程思想解决问题是本题的关键.12、2【解题分析】试题分析:相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.因此.13、1.【解题分析】
先通分,再化简,最后代值即可得出结论.【题目详解】∵x=2018,∴====x﹣1=2018﹣1=1,故答案为:1.【题目点拨】此题主要考查了分式的加减,找出最简公分母是解本题的关键.14、21.2【解题分析】
过点D作DN⊥AB,可得四边形CDME、ACDN是矩形,即可证明△DFM∽△DBN,从而得出BN,进而求得AB的长.【题目详解】解:过点D作DN⊥AB,垂足为N.交EF于M点,∴四边形CDME、ACDN是矩形,∴AN=ME=CD=1.2m,DN=AC=30m,DM=CE=0.6m,∴MF=EF-ME=1.6-1.2=0.4m,依题意知EF∥AB,∴△DFM∽△DBN,DMDN=即:0.630=0.4∴AB=BN+AN=20+1.2=21.2,答:楼高为AB为21.2米.【题目点拨】本题考查了平行投影和相似三角形的应用,是中考常见题型,要熟练掌握.15、-1【解题分析】
连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到12|k|=4,然后去绝对值即可得到满足条件的【题目详解】解:连结OA,如图,
∵AB⊥y轴,
∴OC∥AB,
∴S△OAB=S△ABC=4,
而S△OAB=12|k|,
∴12|k|=4,
∵k<0,
∴k=-1.【题目点拨】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=kx(x<0)图象中任取一点,过这一个点向x轴和y16、四边形【解题分析】
设此多边形是n边形,根据多边形内角与外角和定理建立方程求解.【题目详解】设此多边形是n边形,由题意得:解得故答案为:四边形.【题目点拨】本题考查多边形内角和与外角和,熟记n边形的内角和公式,外角和都是360°是解题的关键.17、甲【解题分析】
根据方差的意义:方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定可得答案.【题目详解】解:,四个人中成绩最稳定的是甲.故答案为:甲.【题目点拨】此题主要考查了方差,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18、x<1【解题分析】分析:根据图象和点A的坐标找到直线y=bx在直线y=ax+4的下方部分图象所对应的自变量的取值范围即可.详解:由图象可知,直线y=bx在直线y=ax+4下方部分所对应的图象在点A的左侧,∵点A的坐标为(1,3),∴不等式bx<ax+4的解集为:x<1.故答案为x<1.点睛:“知道不等式bx<ax+4的解集是函数图象中:直线y=bx在直线y=ax+4的下方部分图象所对应的自变量的取值范围”是解答本题的关键.三、解答题(共66分)19、(1)实际每年绿化面积为75万平方米;(2)平均每年绿化面积至少还要增加37.5万平方米.【解题分析】
(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.5x万平方米.根据“实际每年绿化面积是原计划的1.5倍,这样可提前3年完成任务”列出方程;(2)设平均每年绿化面积增加a万平方米.则由“完成新增绿化面积不超过2年”列出不等式.【题目详解】解:(1)设原计划每年绿化面积为x万平方米,,解得x=50,经检验,x=50是此分式方程的解.∴1.5x=75.答:实际每年绿化面积为75万平方米.(2)设平均每年绿化面积至少还要增加a万平方米,75×3+2(75+a)≥450,解得a≥37.5.答:平均每年绿化面积至少还要增加37.5万平方米.【题目点拨】此题考查一元一次不等式的应用,分式方程的应用,解题关键在于列出方程20、(1)B(0,6);(2)y=3x+6;(3)见解析.【解题分析】
(1)先把A点坐标代入y=-x+b求出b=6,得到直线AB的解析式为y=-x+6,然后求自变量为0时的函数值即可得到点B的坐标;(2)利用OB:OC=3:1得到OC=2,C点坐标为(-2,0),然后利用待定系数法求直线BC的解析式;(3)根据两直线相交的问题,通过解方程组得E(3,3),解方程组得F(-3,-3),然后根据三角形面积公式可计算出S△EBO=9,S△FBO=9,S△EBO=S△FBO.【题目详解】(1)把A(6,0)代入y=-x+b得-6+b=0,解得b=6,所以直线AB的解析式为y=-x+6,当x=0时,y=-x+6=6,所以点B的坐标为(0,6);(2)解:∵OB:OC=3:1,而OB=6,∴OC=2,∴C点坐标为(-2,0),设直线BC:y=mx+n,把B(0,6),C(-2,0)分别代入得,解得,∴直线BC的解析式为y=3x+6;(3)证明:解方程组得,则E(3,3),解方程组得,则F(-3,-3),所以S△EBO=×6×3=9,S△FBO=×6×3=9,所以S△EBO=S△FBO.【题目点拨】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.21、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.【解题分析】
(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【题目详解】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵点E,F,G分别为边AB,BC,CD的中点,∴EF=AC,FG=BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.考点:平行四边形的判定与性质;中点四边形.22、需要进货100件,每件商品应定价25元【解题分析】
根据:每件盈利×销售件数=总盈利额;其中,每件盈利=每件售价-每件进价.建立等量关系.【题目详解】解:依题意(a-21)(350-10a)=400,整理得:a2-56a+775=0,解得a1=25,a2=1.∵21×(1+20%)=25.2,∴a2=1不合题意,舍去.∴350-10a=350-10×25=100(件).答:需要进货100件,每件商品应定价25元.【题目点拨】本题考查了一元二次方程的应用,注意需要检验结果是否符合题意.23、证明见解析.【解题分析】证明:∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形.∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB∥CD,∴∠ACD=∠BAC=∠DAC,∴AD=DC,∴四边形AECD是菱形.24、见解析【解题分析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 八年级数学上册 12.2 三角形全等的判定 第2课时 用“SAS”判定三角形全等听评课记录 新人教版
- 小学数学苏教版六年级下册《分数和百分数的实际应用(总复习)》公开课听评课记录
- 新北师大版数学一年级下册《买铅笔》听评课记录
- 2025年煤制合成氨合作协议书
- 五年级上册数学口算题
- 四年级教师教学计划
- 一年级苏教版数学下册《认识图形》听评课记录
- 社区团购战略合作协议书范本
- 人货电梯租赁合同范本
- 2025年度事故车辆保险责任免除协议书
- 2024年1月高考适应性测试“九省联考”英语 试题(学生版+解析版)
- 一人出资一人出力合伙协议范本完整版
- 2022年北京海淀区高三一模物理试题和答案
- 施工工法的编写与申报(完整版)
- 歇后语大全500条
- 中小学教师校园安全培训
- 2024年北京法院聘用制审判辅助人员招聘笔试参考题库附带答案详解
- (高清版)DZT 0276.13-2015 岩石物理力学性质试验规程 第13部分:岩石比热试验
- 2024浙江省农发集团社会招聘笔试参考题库附带答案详解
- (高清版)DZT 0017-2023 工程地质钻探规程
- 华为狼性培训课件
评论
0/150
提交评论