2024届湖南省衡阳市耒阳市数学八年级第二学期期末监测模拟试题含解析_第1页
2024届湖南省衡阳市耒阳市数学八年级第二学期期末监测模拟试题含解析_第2页
2024届湖南省衡阳市耒阳市数学八年级第二学期期末监测模拟试题含解析_第3页
2024届湖南省衡阳市耒阳市数学八年级第二学期期末监测模拟试题含解析_第4页
2024届湖南省衡阳市耒阳市数学八年级第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省衡阳市耒阳市数学八年级第二学期期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.从某市5000名初一学生中,随机抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是()A.平均数 B.中位数 C.众数 D.方差2.下列四组线段中,可以构成直角三角形的是()A.1,2,3 B.4,5,6 C.9,12,15 D.3.要得到函数y2x3的图象,只需将函数y2x的图象()A.向左平移3个单位 B.向右平移3个单位C.向下平移3个单位 D.向上平移3个单位4.若样本x1+1,x2+1,…,xn+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,xn+2,下列结论正确的是()A.平均数为10,方差为2 B.平均数为11,方差为3C.平均数为11,方差为2 D.平均数为12,方差为45.下列计算中,运算错误的是()A. B.C. D.(-)2=36.某校有15名同学参加区数学竞赛.已知有8名同学获奖,他们的竞赛得分均不相同.若知道某位同学的得分.要判断他能否获奖,在下列15名同学成绩的统计量中,只需知道()A.方差 B.平均数 C.众数 D.中位数7.甲、乙、丙、丁四位同学在三次数学测验中,他们成绩的平均数都是85分,方差分别是:S甲2=3.8,S乙2=2.7,S丙2=6.2,S丁2=5.1,则四个人中成绩最稳定的是()A.j甲 B.乙 C.丙 D.丁8.如图,Rt△ABC中,∠ACB=90°,若AB=15,则正方形ADEC和正方形BCFG的面积之和为()A.150 B.200 C.225 D.无法计算9.一次函数y=kx+b(k<0,b>0)的图象可能是(

)A.

B.

C.

D.10.一次函数的图像上有点,B(2,),则下面关系正确的是()A.>> B.>> C.>> D.>>11.若分式的值为0,则x等于()A.﹣l B.﹣1或2 C.﹣1或1 D.112.若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x≥2 D.x≤2二、填空题(每题4分,共24分)13.比较大小:_____.(填“>”、“<"或“=")14.在△ABC中,∠C=90∘,AC=3,BC=4,点D,E,F分别是边AB,AC,BC的中点,则△DEF的周长是15.如图,在菱形ABCD中,已知DE⊥AB,AE:AD=3:5,BE=2,则菱形ABCD的面积是_______.16.在平面直角坐标系xOy中,点A、B分别在x轴、y轴的正半轴上运动,点M为线段AB的中点.点D、E分别在x轴、y轴的负半轴上运动,且DE=AB=1.以DE为边在第三象限内作正方形DGFE,则线段MG长度的最大值为_____.17.如图,Rt△ABC中,∠C=90°,AC=3,BC=1.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S1.则S1﹣S2+S3+S1等于_____.18.如果一组数据a,a,…a的平均数是2,那么新数据3a,3a,…3a的平均数是______.三、解答题(共78分)19.(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0,﹣1).(1)写出A、B两点的坐标(1)经过平移,△ABC的顶点A移到了点A1,画出平移后的△A1B1C1;若△ABC内有一点P(a,b),直接写出按(1)的平移变换后得到对应点P1的坐标.(3)画出△ABC绕点C旋转180°后得到的△A1B1C1.20.(8分)如图所示,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处.(1)求证B′E=BF;(2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的一种关系,并给出证明.21.(8分)解方程:(1);(2)22.(10分)已知,在正方形中,点、在上,且.(1)求证:四边形是菱形;(2)若正方形的边长为,求菱形的面积.23.(10分)如图,在四边形中,,点为的中点.(1)求证:四边形是菱形;(2)联结,如果平分,求的长.24.(10分)如图,在△ABC中,∠C=90∘,AC=BC,AD平分∠CAB,DE⊥AB,垂足为E.(1)求证:CD=BE;(2)若AB=10,求BD的长度.25.(12分)一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2)由表达式你能求出降价前每千克的土豆价格是多少?试求降价前y与x之间的关系式(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?26.如图,已知平行四边形ABCD的周长是32cm,,,,E,F是垂足,且(1)求的度数;(2)求BE,DF的长.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

服装厂最感兴趣的是哪种尺码的服装售量较多,也就是需要参照指标众数.【题目详解】由于众数是数据中出现次数最多的数,故服装厂最感兴趣的指标是众数.故选(C)【题目点拨】本题考查统计量的选择,解题的关键是区分平均数、中位数、众数和方差的概念与意义进行解答;2、C【解题分析】

根据勾股定理的逆定理,看较小两条边的平方和是否等于最长边的平方即可判断.【题目详解】A、12+22≠32,不能构成直角三角形,故不符合题意;B、42+52≠62,不能构成直角三角形,故不符合题意;C、92+122=152,能构成直角三角形,故符合题意;D、,不能构成直角三角形,故不符合题意,故选C.【题目点拨】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3、D【解题分析】

平移后相当于x不变y增加了3个单位,由此可得出答案.【题目详解】解:由题意得x值不变y增加3个单位

应向上平移3个单位.

故选:D.【题目点拨】本题考查一次函数图象的几何变换,注意平移k值不变的性质.4、C【解题分析】

分析:利用样本的平均数和方差的公式计算,即可得到结果.详解:因为样本的平均数是,方差为,∴,即,方差则,样本的方差为,故选C.点睛:本题主要考查了数据的平均数与方差的计算,其中熟记样本数据的平均数和方差的公式是解答的关键,着重考查了推理与运算能力.5、C【解题分析】

根据二次根式的除法法则对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的加减法对C进行判断;根据二次根式的性质对D进行判断.【题目详解】A、=,所以A选项的计算正确;B、=,所以B选项的计算正确;C、与不能合并,所以C选项的计算错误;D、(-)2=3,所以D选项的计算正确.故选:C.【题目点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.6、D【解题分析】

15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能获奖,只需要了解自己的成绩以及全部成绩的中位数,比较即可。【题目详解】解:由于总共有15个人,且他们的分数互不相同,第8名的成绩是中位数,要判断是否得奖,故应知道自已的成绩和中位数.故选:D.【题目点拨】本题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7、B【解题分析】

根据方差的定义,方差越小数据越稳定,即可得出答案.【题目详解】解:∵S甲2=3.8,S乙2=2.7,S丙2=6.2,S丁2=5.1,∴S乙2<S甲2<S丁2<S丙2,∴四个人中成绩最稳定的是乙,故选:B.【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8、C【解题分析】

小正方形的面积为AC的平方,大正方形的面积为BC的平方,两正方形面积的和为AC2+BC2,对于Rt△ABC,由勾股定理得AB2=AC2+BC2,AB=15,故可以求出两正方形面积的和.【题目详解】正方形ADEC的面积为:

AC2

正方形BCFG的面积为:BC2

在Rt△ABC中,AB2

=

AC2+

BC2,AB=15,

则AC2

+

BC2

=

225cm2,故选:C.【题目点拨】此题考查勾股定理,熟记勾股定理的计算公式是解题的关键.9、C【解题分析】

根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.【题目详解】∵k<0,

∴一次函数y=kx+b的图象经过第二、四象限.

又∵b>0时,

∴一次函数y=kx+b的图象与y轴交与正半轴.

综上所述,该一次函数图象经过第一象限.故答案为:C.【题目点拨】考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.10、C【解题分析】

根据一次函数时,y随x的增大而减小,可得,的大小关系,再根据不等式的性质判断,与b的大小关系.【题目详解】∵一次函数中,∴y随x的增大而减小∵∴∵∴∴,即,∴故选C.【题目点拨】本题考查一次函数的增减性,熟练掌握时,一次函数y随x的增大而减小是解题的关键.11、D【解题分析】

直接利用分式的值为零则分子为零分母不为零进而得出答案.【题目详解】解:∵分式的值为0,∴|x|﹣1=0,x﹣2≠0,x+1≠0,解得:x=1.故选D.【题目点拨】此题主要考查了分式有意义的条件,正确把握定义是解题关键.12、C【解题分析】

根据二次根式的性质,被开方数大于等于0,就可以求解.【题目详解】解:根据题意得:x﹣1≥0,解得:x≥1.故选:C.【题目点拨】本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.二、填空题(每题4分,共24分)13、【解题分析】

首先分别求出两个数的平方的大小;然后根据:两个正实数,平方大的这个数也大,判断出两个数的大小关系即可.【题目详解】解:,,,.故答案为:.【题目点拨】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数负实数,两个正实数,平方大的这个数也大.14、6【解题分析】

首先利用勾股定理求得斜边长,然后利用三角形中位线定理求得答案即可.【题目详解】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=AC2+BC∵点D、E、F分别是边AB、AC、BC的中点,∴DE=12BC,DF=12AC,EF=1∴C△DEF=DE+DF+EF=12BC+12AC+12AB=1故答案为:6.【题目点拨】本题考查了勾股定理和三角形中位线定理.15、20【解题分析】

先由线段比求出AE,AB,AD,再由勾股定理求出DE,根据面积公式再求结果.【题目详解】因为,四边形ABCD是菱形,所以,AD=AB,因为,AE:AD=3:5,所以,AE:AB=3:5,所以,AE:BE=3:2,因为,BE=2,所以,AE=3,AB=CD=5,所以,DE=,所以,菱形ABCD的面积是AB∙DE=5×4=20故答案为20【题目点拨】本题考核知识点:菱形性质.解题关键点:由勾股定理求出高.16、1+2【解题分析】

取DE的中点N,连结ON、NG、OM.根据勾股定理可得.在点M与G之间总有MG≤MO+ON+NG(如图1),M、O、N、G四点共线,此时等号成立(如图2).可得线段MG的最大值.【题目详解】如图1,取DE的中点N,连结ON、NG、OM.∵∠AOB=90°,∴OM=AB=2.同理ON=2.∵正方形DGFE,N为DE中点,DE=1,∴.在点M与G之间总有MG≤MO+ON+NG(如图1),如图2,由于∠DNG的大小为定值,只要∠DON=∠DNG,且M、N关于点O中心对称时,M、O、N、G四点共线,此时等号成立,∴线段MG取最大值1+2.故答案为:1+2.【题目点拨】此题考查了直角三角形的性质,勾股定理,四点共线的最值问题,得出M、O、N、G四点共线,则线段MG长度的最大是解题关键.17、2【解题分析】

过F作AM的垂线交AM于D,通过证明S2=SRt△ABC;S3=SRt△AQF=SRt△ABC;S1=SRt△ABC,进而即可求解.【题目详解】解:过F作AM的垂线交AM于D,可证明Rt△ADF≌Rt△ABC,Rt△DFK≌Rt△CAT,所以S2=SRt△ABC.由Rt△DFK≌Rt△CAT可进一步证得:Rt△FPT≌Rt△EMK,∴S3=S△FPT,又可证得Rt△AQF≌Rt△ACB,∴S1+S3=SRt△AQF=SRt△ABC.易证Rt△ABC≌Rt△EBN,∴S1=SRt△ABC,∴S1﹣S2+S3+S1=(S1+S3)﹣S2+S1=SRt△ABC﹣SRt△ABC+SRt△ABC=2﹣2+2=2,故答案是:2.【题目点拨】本题考查正方形的性质及三角形全等的判定与性质,根据已知条件证得S2=SRt△ABC,S3=SRt△AQF=SRt△ABC,S1=SRt△ABC是解决问题的关键.18、6【解题分析】

根据所给的一组数据的平均数写出这组数据的平均数的表示式,把要求的结果也有平均数的公式表示出来,根据前面条件得到结果.【题目详解】解:一组数据,,,的平均数为2,,,,,的平均数是故答案为6【题目点拨】本题考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.三、解答题(共78分)19、(1)A(﹣1,1),B(﹣3,1);(1)P1(a+4,b+1);(3)见解析.【解题分析】

(1)根据直角坐标系写出A、B两点的坐标即可.(1)首先确定点A的平移路径,再将B和C按照点A的平移路线平移,再将平移点连接起来即可.(3)首先根据点C将A点和B点旋转,再将旋转后的点连接起来即可.【题目详解】解:(1)根据图形得:A(﹣1,1),B(﹣3,1);(1)如图所示:△A1B1C1,即为所求;根据题意得:P1(a+4,b+1);(3)如图所示:△A1B1C1,即为所求.【题目点拨】本题主要考查直角坐标系中图形的平移和旋转,关键在于根据点的平移和旋转来确定图形的平移和旋转.20、(1)证明见解析;(1)a,b,c三者存在的关系是a+b>c,理由见解析.【解题分析】(1)首先根据题意得B′F=BF,∠B′FE=∠BFE,接着根据平行线的性质和等腰三角形的判定即可证明B′E=BF;

(1)解答此类题目时要仔细读题,根据三角形三边关系求解分类讨论解答,要提高全等三角形的判定结合勾股定理解答.证明:(1)由题意得B′F=BF,∠B′FE=∠BFE,

在矩形ABCD中,AD∥BC,

∴∠B′EF=∠BFE,

∴∠B′FE=∠B'EF,

∴B′F=BE,

∴B′E=BF;

解:(1)答:a,b,c三者关系不唯一,有两种可能情况:

(ⅰ)a,b,c三者存在的关系是a1+b1=c1.

证明:连接BE,则BE=B′E,

由(1)知B′E=BF=c,

∴BE=c.

在△ABE中,∠A=90°,

∴AE1+AB1=BE1,

∵AE=a,AB=b,

∴a1+b1=c1;

(ⅱ)a,b,c三者存在的关系是a+b>c.

证明:连接BE,则BE=B′E.

由(1)知B′E=BF=c,

∴BE=c,

在△ABE中,AE+AB>BE,

∴a+b>c.“点睛”此题以证明和探究结论形式来考查矩形的翻折、等角对等边、三角形全等、勾股定理等知识.第一,较好考查学生表述数学推理和论证能力,第(1)问重点考查了学生逻辑推理的能力,主要利用等角对等边、翻折等知识来证明;第二,试题呈现显示了浓郁的探索过程,试题设计的起点低,图形也很直观,也可通过自已动手操作,寻找几何元素之间的对应关系,形成较为常规的方法解决问题,第(1)问既考查了学生对勾股定理掌握的程度又考查学生的数学猜想和探索能力,这对于培养学生创新意识和创新精神十分有益;第三,解题策略多样化在本题中得到了充分的体现.21、(1);(2)【解题分析】

(1)两边开方,即可得出两个一元一次方程,求出方程的解即可;(2)先把方程左边利用十字相乘法分解因式,即可得出两个一元一次方程,求出方程的解即可.【题目详解】解:(1)两边开方得:x-3=±3,

∴x-3=3或x-3=-3,

∴x1=6,x2=0;

(2)2x2+x-1=0,

∴(2x-1)(x+1)=0,

∴2x-1=0或x+1=0,

∴,x2=.【题目点拨】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.22、(1)见解析;(2)-4.【解题分析】【分析】(1)由对角线互相垂直平分的四边形是菱形,AO=CO,EO=FO,AC⊥EF即可证得;(2)先求出AC、BD的长,再根据已知求出EF的长,然后利用菱形的面积公式进行计算即可得.【题目详解】(1)如图,连接AC,交BD于点O,∵四边形ABCD是正方形,∴OA=OC,OB=OD,又∵BE=DF,∴BE-BO=DF-DO,即OE=OF,∴四边形AFCE是平行四边形,∵AC⊥EF,∴□AFCE是菱形;(2)∵四边形ABCD是正方形,∴AC=BD,AB=AD=2,∠BAD=90°∴AC=BD=,∵AB=BE=DF,∴BF=DE=-2,∴EF=4-,∴S菱形=EF·AC=(4-)·=-4.【题目点拨】本题考查了正方形的性质,菱形的判定与性质,熟练掌握正方形的性质、菱形的判定与性质定理、准确添加辅助线是解题的关键.23、(1)见解析;(2)2【解题分析】

(1)根据菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,据此判断即可.(2)此题有两种解决方法,方法一:证明四边形是等腰梯形,方法二:证明∠BDC为直角.【题目详解】(1)证明:,点为的中点,,又四边形是平行四边形,四边形是菱形(2)解:方法一四边形是梯形.平分四边形是菱形,.四边形是等腰梯形,方法二:平分,即,四边形是菱形,,即,【题目点拨】此题考查菱形的判定与性质,解题关键在于结结合题意运用菱形的判定与性质即可.24、(1)详见解析;(2)BD=.【解题分析】

(1)等腰直角三角形的底角为45°,角平分线上的点到两边的距离相等,根据这些知识用线段的等量代换可求解.

(2)先求出BC的长度,再设BD=x,可表示出CD,从而可列方程求解.【题目详解】(1)证明:∵A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论