版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省东营市河口区义和镇中学心学校2024届八年级数学第二学期期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.某校为了了解学生在校午餐所需的时间,抽查了20名同学在校午餐所需的时间,获得如下数据(单位:分):10,12,15,10,1,18,19,18,20,34,22,25,20,18,18,20,15,1,21,1.若将这些数据分为5组,则组距是()A.4分 B.5分 C.6分 D.7分2.一次函数y=kx+b中,y随x的增大而增大,b>0,则这个函数的图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.分别以下列三条线段组成的三角形不是直角三角形的是()A.3、4、5 B.6、8、10 C.1、1、 D.6、7、84.如图所示,在菱形ABCD中,已知两条对角线AC=24,BD=10,则此菱形的边长是()A.11 B.13 C.15 D.175.已知,则有()A. B. C. D.6.在矩形ABCD中,AB=3,BC=4,E是BC上一点,且与B、C不重合,若AE是整数,则AE等于()A.3 B.4 C.5 D.67.如图,在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54° B.60° C.66° D.72°8.平行四边形的一个内角为50°,它的相邻的一个内角等于()A.40° B.50° C.130° D.150°9.在中,若,则()A. B. C. D.10.分式有意义,则x的取值范围是()A.x1 B.x0 C.x1 D.x1二、填空题(每小题3分,共24分)11.如图,于点E,于点F,,求证:.试将下面的证明过程补充完整填空:证明:,已知______同位角相等,两直线平行,两直线平行,同旁内角互补,又已知,______,同角的补角相等______内错角相等,两直线平行,______12.有7个数由小到大依次排列,其平均数是38,如果这组数的前4个数的平均数是33,后4个数的平均数是42,则这7个数的中位数是.13.已知甲乙两车分别从A、B两地出发,相向匀速行驶,已知乙车先出发,1小时后甲车再出发.一段时间后,甲乙两车在休息站C地相遇:到达C地后,乙车不休息继续按原速前往A地,甲车休息半小时后再按原速前往B地,甲车到达B地停止运动;乙车到A地后立刻原速返回B地,已知两车间的距离y(km)随乙车运动的时间x(h)变化如图,则当甲车到达B地时,乙车距离B地的距离为_____(km).14.不等式组的整数解有_____个.15.直线上有一点则点关于原点的对称点为________________(不含字母).16.如图,矩形ABCD的对角线AC与BD相交点O,∠AOB=60°,AB=10,E、F分别为AO、AD的中点,则EF的长是_____.17.如图所示,△ABC为等边三角形,D为AB的中点,高AH=10cm,P为AH上一动点,则PD+PB的最小值为_______cm.18.合作小组的4位同学在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,则B坐在2号座位的概率是.三、解答题(共66分)19.(10分)如图,在中,,,,点、分别在,上,连接.(1)将沿折叠,使点落在边上的点处,如图1,若,求的长;(2)将沿折叠,使点落在边上的点处,如图2,若.①求的长;②求四边形的面积;(3)若点在射线上,点在边上,点关于所在直线的对称点为点,问:是否存在以、为对边的平行四边形,若存在,求出的长;若不存在,请说明理由.20.(6分)如图,在等腰梯形ABCD中,AB=DC,点M,N分别是AD,BC的中点,点E,F分别是BM,CM的中点.(1)求证:四边形MENF是菱形;(2)当四边形MENF是正方形时,求证:等腰梯形ABCD的高是底边BC的一半.21.(6分)学校规定学生的学期总评成绩满分为100分,学生的学期总评成绩根据平时成绩、期中考试成绩和期末考试成绩按照2∶3∶5的比确定,小欣的数学三项成绩依次是85、90、94,求小欣这学期的数学总评成绩.22.(8分)如图,ΔABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠ACB=30∘,∠B=45∘,23.(8分)为了让学生拓展视野、丰富知识,加深与自然和文化的亲近感,增加对集体生活方式和社会公共道德的体验,我区某中学决定组织部分师生去随州炎帝故里开展研学旅行活动.在参加此次活动的师生中,若每位老师带个学生,还剩个学生没人带;若每位老师带个学生,就有一位老师少带个学生.为了安全,既要保证所有师生都有车坐,又要保证每辆客车上至少要有名老师.现有甲、乙两种大客车,它们的载客量和租金如表所示.(1)参加此次研学旅行活动的老师有人;学生有人;租用客车总数为辆;(2)设租用辆乙种客车,租车费用为元,请写出与之间的函数关系式;(3)在(2)的条件下,学校计划此次研学旅行活动的租车总费用不超过元,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.24.(8分)解方程:25.(10分)先化简,再求值:,其中x=.26.(10分)如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】
找出20个数据的最大值与最小值,求出它们的差,再除以5即得结果.【题目详解】解:根据题意得:(34-10)÷5=4.8.即组距为5分.故选B.【题目点拨】本题考查了频数分布表的相关知识,弄清题意,掌握求组距的方法是解题的关键.2、D【解题分析】
先根据一次函数的增减性判断出k的符号,再由一次函数的图象与系数的关系即可得出结论.【题目详解】解:∵一次函数y=kx+b中,y随x的增大而增大,∴k0.∵b0,∴此函数的图象经过第一、二、三象限,不经过第四象限.故选D.点睛:本题主要考查了一次函数图象与系数的关系,关键在于根据一次函数的增减性判断出k的正负.3、D【解题分析】
根据勾股定理的逆定理可知,两较短边的平方和等于最长边的平方,逐项验证即可.【题目详解】A.,可组成直角三角形;B.,可组成直角三角形;C.,可组成直角三角形;D.,不能组成直角三角形.故选D.【题目点拨】本题考查勾股定理的逆定理,熟练掌握两较短边的平方和等于最长边的平方是解题的关键.4、B【解题分析】
由菱形的性质可得AO=12AC=12,BO=12【题目详解】如图,∵四边形ABCD是菱形∴AC⊥BD,AO=12AC=12,BO=1∴AB=AO故选B.【题目点拨】本题考查了菱形的性质,利用勾股定理求AB长是本题的关键.5、A【解题分析】
求出m的值,求出2)的范围5<m<6,即可得出选项.【题目详解】m=(-)×(-2),=,
=×3=2=,
∵,
∴5<<6,
即5<m<6,
故选A.【题目点拨】本题考查了二次根式的乘法运算和估计无理数的大小的应用,注意:5<<6,题目比较好,难度不大.6、B【解题分析】
由勾股定理可求AC的长,即可得AE的范围,则可求解.【题目详解】解:连接AC,∵在矩形ABCD中,AB=3,BC=4∴AC==5∴E是BC上一点,且与B、C不重合∴3<AE<5,且AE为整数∴AE=4故选B.【题目点拨】本题考查了矩形的性质,勾股定理,熟练运用矩形的性质是本题的关键.7、D【解题分析】
过F作AB、CD的平行线FG,由于F是AD的中点,那么G是BC的中点,即Rt△BCE斜边上的中点,由此可得BC=2EG=2FG,即△GEF、△BEG都是等腰三角形,因此求∠B的度数,只需求得∠BEG的度数即可;易知四边形ABGF是平行四边形,得∠EFG=∠AEF,由此可求得∠FEG的度数,即可得到∠AEG的度数,根据邻补角的定义可得∠BEG的值,由此得解.【题目详解】过F作FG∥AB∥CD,交BC于G;则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;连接EG,在Rt△BEC中,EG是斜边上的中线,则BG=GE=FG=BC;∵AE∥FG,∴∠EFG=∠AEF=∠FEG=54°,∴∠AEG=∠AEF+∠FEG=108°,∴∠B=∠BEG=180°-108°=72°.故选D.【题目点拨】此题主要考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出与所求相关的等腰三角形是解决问题的关键.8、C【解题分析】
利用平行四边形的邻角互补进而得出答案.【题目详解】解:∵平行四边形的一个内角为50°,邻角互补,∴它的相邻的一个内角等于180°-50°=130°.故选:C.【题目点拨】此题主要考查了平行四边形的性质,熟记平行四边形的邻角互补关系是解题关键.9、A【解题分析】
根据平行四边形的性质可得出,,因此,,即可得出答案.【题目详解】解:根据题意可画出示意图如下:∵四边形ABCD是平行四边形,∴,∴,∵,∴,∴.故选:A.【题目点拨】本题考查的知识点是平行四边形的性质,属于基础题目,易于理解掌握.10、C【解题分析】分析:根据分式有意义的条件可得x﹣1≠0,再解不等式即可.详解:由题意得:x﹣1≠0,解得:x≠1.故选C.点睛:本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.二、填空题(每小题3分,共24分)11、垂直的定义;;BC;两直线平行,同位角相等
【解题分析】
根据垂线的定义结合平行线的判定定理可得出,由平行线的性质可得出,结合可得出,从而得出。根据平行线的性质即可得出,此题得解.【题目详解】证明:,(垂直的定义),(同位角相等,两直线平行),(两直线平行,同旁内角互补),又,(同角的补角相等),(内错角相等,两直线平行),(两直线平行,同位角相等).故答案为:垂直的定义;;;两直线平行,同位角相等.【题目点拨】本题考查了平行线的判定与性质以及垂线的定义,熟练掌握平行线的判定与性质定理是解题的关键.12、34【解题分析】试题解析:解:设这7个数的中位数是x,根据题意可得:,解方程可得:x=34.考点:中位数、平均数点评:本题主要考查了平均数和中位数.把一组数据按照从小到大的顺序或从大到小的顺序排列,最中间的一个或两个数的平均数叫做这组数据的中位数.13、1【解题分析】
先从图象中获取信息得知A,B两地之间的距离及乙的行驶时间求出乙车的速度,然后再根据两车的相遇时间求出甲的速度,然后求出甲车行完全程的时间,就可以算出此时乙车的行驶时间,用总时间减去甲行完全程时的时间求出乙车剩下的时间,再乘以乙车的速度即可求出路程.【题目详解】由图象可知,A、B两地相距990千米,而乙来回用时22小时,因此乙车的速度为:990÷(22÷2)=90千米/小时,甲乙两车在C地相遇后,甲休息0.5小时,乙继续走,所以乙车出发7小时后两车相遇,因此甲车速度为:(990﹣90×7)÷(7﹣1)=60千米/小时,甲车行完全程的时间为:990÷60=16.5小时,此时乙车已经行驶16.5+0.5+1=18小时,因此乙车距B地还剩22﹣18=4小时的路程,所以当甲车到达B地时,乙车距离B地的距离为90×4=1千米,故答案为:1.【题目点拨】本题主要考查一次函数的应用,能够从图象中获取有用信息并掌握行程问题的解法是解题的关键.14、3【解题分析】
首先解每个不等式,把解集在数轴上表示出来即可得到不等式组的解集,然后确定解集中的整数,便可得到整数解得个数.【题目详解】,解不等式得:,解不等式得:,不等式的解集是,则整数解是:,共个整数解.故答案为:.【题目点拨】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大,同小取小,大小小大中间找,大大小小找不到.15、(-1,-3).【解题分析】
根据一次函数图象上点的坐标性质得出P点坐标,再利用关于原点的对称点的性质得出答案.【题目详解】解:∵直线y=x+2上有一点P(1,m),∴x=1,y=1+2=3,∴P(1,3),∴P点关于原点的对称点P′的坐标为:(-1,-3).故答案为:(-1,-3).【题目点拨】此题主要考查了一次函数图象上点的坐标性质以及关于原点的对称点的性质,正确把握相关定义是解题关键.16、1.【解题分析】
根据矩形的性质得出AO=OC,DO=BO,AC=BD,求出DO=CO=AO=BO,求出△AOB是等边三角形,根据等边三角形的性质得出AO=OB=DO=10,根据三角形的中位线定理求出即可.【题目详解】∵四边形ABCD是矩形,∴AO=OC,DO=BO,AC=BD,∴DO=CO=AO=BO,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=10,∴AO=OB=DO=10,∵E、F分别为AO、AD的中点,∴EF=DO==1,故答案为:1.【题目点拨】本题考查了矩形的性质,等边三角形的判定与性质,三角形的中位线等知识.矩形的性质:①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分.17、10【解题分析】
连接PC,根据等边三角形三线合一的性质,可得PC=BP,PD+PB要取最小值,应使D、P、C三点一线.【题目详解】连接PC,∵△ABC为等边三角形,D为AB的中点,∴PD+PB的最小值为:PD+PB=PC+PD=CD=AH=10cm.故答案为:10【题目点拨】考查轴对称-最短路线问题,等边三角形的性质,找出点P的位置是解题的关键.18、.【解题分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵坐到1,2,3号的坐法共有6种方法:BCD、BDC、CBD、CDB、DBC、DCB,其中有2种方法(CBD、DBC)B坐在2号座位,∴B坐在2号座位的概率是.三、解答题(共66分)19、(1);(2)①;②;(3)存在,或6.【解题分析】
(1)先判断出S△ABC=4S△AEF,再求出AB,判断出Rt△AEF∽△Rt△ABC,得出,代值即可得出结论;
(2)先判断出四边形AEMF是菱形,再判断出△CME∽△CBA得出比例式,代值即可得出结论;
(3)分两种情况,利用平行四边形的性质,对边平行且相等,最后用勾股定理即可得出结论.【题目详解】解:(1)∵沿折叠,折叠后点落在上的点处,∴,,∴,∵,∴,在中,∵,,,∴,∵,∴,∴,∴,即:,∴;(2)①∵沿折叠,折叠后点落在边上的点处,∴,,,∴,∴,∴,∴四边形是菱形,设,则,,∵四边形是菱形,∴,∴,∴,∴,∴,,即:,②由①知,,,∴;(3)①如图3,当点在线段上时,∵与是平行四边形的对边,∴,,由对称性知,,,∴,设,∵,∴,,∴,∴,∴,,∴,,在中,,∴,∴,即:;②如图4,当点在线段的延长线上时,延长交于,同理:,,在中,,∴,∴,∴,即:或6.【题目点拨】此题是四边形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,对称的性质,勾股定理,平行四边形的性质,求出AE是解本题的关键.20、见解析【解题分析】
(1)利用等腰梯形的性质证明,利用全等三角形性质及中点概念,中位线的性质证明四边形的四边相等得结论.(2)连接,利用三线合一证明是等腰梯形的高,再利用正方形与直角三角形的性质可得结论.【题目详解】(1)四边形为等腰梯形,所以,为中点,.
,
.
为、中点,,,所以:,为的中点,为中点,
∴四边形是菱形.
(2)连结MN,∵BM=CM,BN=CN,∴MN⊥BC,∵AD∥BC,∴MN⊥AD,∴MN是梯形ABCD的高,又∵四边形MENF是正方形,∴△BMC为直角三角形,又∵N是BC的中点,,即等腰梯形ABCD的高是底边BC的一半.
【题目点拨】本题考查的是等腰梯形的性质,等腰直角三角形的性质,三角形的全等的判定,菱形的判定,正方形的性质等,掌握以上知识点是解题关键.21、小欣这学期的数学总评成绩为91分.【解题分析】
根据加权平均数的计算公式即可得.【题目详解】由题意得:小欣这学期的数学总评成绩为(分)答:小欣这学期的数学总评成绩为91分.【题目点拨】本题考查了加权平均数的应用,熟记公式是解题关键.22、(1)详见解析;(2)BG=5+5【解题分析】
(1)根据CD平分∠ACB,得到∠ACD=∠DCG,再根据EG垂直平分CD,得到DG=CG,DE=EC,从而得到∠EDC=∠DCG=∠ACD=∠GDC,故CE∥DG,DE∥GC,从而证明四边形DECG是平行四边形,再根据DE=EC证明四边形DGCE是菱形;(2)过点D作DH⊥BC,由(1)知CG=DG=10,DG∥EC,得到∠ACB=∠DGB=30∘,且DH⊥BC,得到HG=3DH=53,由∠B=45【题目详解】解:(1)证明:∵CD平分∠ACB,∴∠ACD=∠DCG,∵EG垂直平分CD,∴DG=CG,DE=EC,∴∠DCG=∠GDC,∠ACD=∠EDC,∴∠EDC=∠DCG=∠ACD=∠GDC,∴CE∥DG,DE∥GC,∴四边形DECG是平行四边形,又∵DE=EC,∴四边形DGCE是菱形;(2)如图,过点D作DH⊥BC,由(1)知∴CG=DG=10,DG∥EC,∴∠ACB=∠DGB=30∘,且∴DH=5,HG=3∵∠B=45∘,∴∠B=∠BDH=45∴BH=DH=5,∴BG=BH+HG=5+53【题目点拨】此题主要考查菱形的判定与性质,解题的关键是熟知菱形的判定定理、含30°的直角三角形的性质及等腰直角三角形的性质.23、(1);;;(2);(3)共有种租车方案:方案一:租用甲种客车辆,乙种客车辆;方案二:租用甲种客车辆,乙种客车辆;方案三:租用甲种客车辆,乙种客车辆;最节省费用的租车方案是:租用甲种客车辆,乙种客车辆;【解题分析】
(1)设出老师有x名,学生有y名,得出二元一次方程组,解出即可;(2)设用辆乙,则甲种客车数为:辆,代入计算即可(3)设租用x辆乙种客车,则甲种客车数为:(8-x)辆,由题意得出400x+300(8-x)≤3100,得出x取值范围,分析得出即可.【题目详解】(1)设老师有x名,学生有y名。依题意,列方程组,解得,∵每辆客车上至少要有2名老师,∴汽车总数不能超过8辆;又要保证300名
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年玻璃石材家具项目评估分析报告
- 幕墙工程售后服务承诺书(35篇)
- 《榜样的力量》观后感(5篇)
- DB12-T 1072-2021 呼吸道传染病集中隔离医学观察点消毒技术指南
- 茶文化与茶艺鉴赏 教案 项目四 知茶性-茶叶基础知识
- 2024年碳金融项目资金申请报告代可行性研究报告
- 华中科技大学建规学院设计素描教案
- 供应链运营 教案项目一 供应链及供应链管理
- 新建民用装配式建筑防护设计与施工技术规范征求意见稿
- 中小学生防火安全主题班会教案
- 音乐与健康智慧树知到期末考试答案2024年
- 低压断路器课件
- 小学生书法展览活动方案
- 24春国家开放大学《金融基础》形考任务题库参考答案
- 乡镇平安建设培训课件
- 外国新闻传播史 课件 第十八章 埃及的新闻传播事业
- 广东省珠海市2024年春季高考模拟考试数学试卷含答案
- 四川航空介绍
- 从销售到营销的转变与发展
- 机关食堂食品安全
- 车间监控方案
评论
0/150
提交评论