2024届浙江省杭州市富阳区八年级数学第二学期期末综合测试试题含解析_第1页
2024届浙江省杭州市富阳区八年级数学第二学期期末综合测试试题含解析_第2页
2024届浙江省杭州市富阳区八年级数学第二学期期末综合测试试题含解析_第3页
2024届浙江省杭州市富阳区八年级数学第二学期期末综合测试试题含解析_第4页
2024届浙江省杭州市富阳区八年级数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省杭州市富阳区八年级数学第二学期期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若,则的值为()A. B. C. D.2.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是(

)A. B. C. D.3.数据1,3,5,7,9的方差是().A.2 B.4 C.8 D.164.定义一种正整数“”的运算:①当是奇数时,;②当是偶数时,(其中是使得为奇数的正整数......,)两种运算交替重复运行.例如,取,则:,若,则第次“”运算的结果是()A. B. C. D.5.如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C.D.6.如图,▱ABCD中,对角线AC,BD相交于点O,OA=3,若要使平行四边形ABCD为矩形,则OB的长度为()A.4 B.3 C.2 D.17.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A.平均数B.方差C.众数D.中位数8.如图,平面直角坐标系中,的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与有交点时,b的取值范围是()A. B.C. D.9.甲乙两城市相距600千米,一辆货车和一辆客车均从甲城市出发匀速行驶至乙城市.已知货车出发1小时后客车再出发,先到终点的车辆原地休息.在汽车行驶过程中,设两车之间的距离为s(千米),客车出发的时间为t(小时),它们之间的关系如图所示,则下列结论错误的是()A.货车的速度是60千米/小时B.离开出发地后,两车第一次相遇时,距离出发地150千米C.货车从出发地到终点共用时7小时D.客车到达终点时,两车相距180千米10.在实数范围内,有意义,则x的取值范围是()A.x≥0 B.x≤0 C.x>0 D.x<011.如果关于的方程有解,那么实数的取值范围是()A. B. C. D.12.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=210二、填空题(每题4分,共24分)13.已知关于x的方程有两个不相等的实数根,则a的取值范围是_____________.14.已知关于x的方程的两根为-3和1,则的值是________。15.在菱形中,若,,则菱形的周长为________.16.对分式和进行通分,它们的最简公分母是________.17.如图的直角三角形中未知边的长x=_______.18.如图是一辆慢车与一辆快车沿相同路线从地到地所行的路程与时间之间的函数图象,已知慢车比快车早出发小时,则、两地的距离为________

.三、解答题(共78分)19.(8分)如图,在中,为的中点,,.动点从点出发,沿方向以的速度向点运动;同时动点从点出发,沿方向以的速度向点运动,运动时间是秒.(1)用含的代数式表示的长度.(2)在运动过程中,是否存在某一时刻,使点位于线段的垂直平分线上?若存在,求出的值;若不存在,请说明理由.(3)是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.(4)是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.20.(8分)先化简,再求值:,其中a=-.21.(8分)如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AGBD交CB的延长线于点G.(1)求证:DEBF;(2)当∠G为何值时?四边形DEBF是菱形,请说明理由.22.(10分)计算题:(1);(2)已知,,求代数式的值.23.(10分)据某市交通运管部门月份的最新数据,目前该市市面上的共享单车数量已达万辆,共享单车也逐渐成为高校学生喜爱的“绿色出行”方式之一.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.使用次数人数(1)求这天部分出行学生使用共享单车次数的平均数,中位数和众数.(2)若该校这天有名学生出行,估计使用共享单车次数在次以上(含次)的学生数.24.(10分)为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数a的值为,所抽查的学生人数为.(2)求出平均睡眠时间为8小时的人数,并补全频数直方图.(3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.25.(12分)计算:(+)×26.如图1,在ABC中,AB=AC,点D,E分别在边AB,AC上,且AD=AE,连接DE,现将ADE绕点A逆时针旋转一定角度(如图2),连接BD,CE.(1)求证:ABD≌ACE;(2)延长BD交CE于点F,若AD⊥BD,BD=6,CF=4,求线段DF的长.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

首先设,将代数式化为含有同类项的代数式,即可得解.【题目详解】设∴∴故答案为C.【题目点拨】此题主要考查分式计算,关键是设参数求值.2、C【解题分析】

数出黑色瓷砖的数目和瓷砖总数,求出二者比值即可.【题目详解】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值,进而转化为黑色瓷砖个数与总数的比值即.故选C.【题目点拨】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.3、C【解题分析】

先计算出平均数,再根据方差公式计算即可.【题目详解】∵1、3、5、7、9的平均数是(1+3+5+7+9)÷5=5,

∴方差=×[(1-5)2+(3-5)2+(5-5)2+(7-5)2+(9-5)2]=8;

故选:C.【题目点拨】考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4、B【解题分析】

计算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可.【题目详解】若n=13,第1次结果为:3n+1=10,第2次结果是:=5,第3次结果为:3n+1=16,第1次结果为:=1,第5次结果为:1,第6次结果为:1,…可以看出,从第四次开始,结果就只是1,1两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是1,而2019次是奇数,因此最后结果是1.故选B.【题目点拨】本题主要考查了数字的变化类,能根据所给条件得出n=13时六次的运算结果,找出规律是解答此题的关键.5、D【解题分析】试题解析:动点P运动过程中:①当0≤s≤时,动点P在线段PD上运动,此时y=2保持不变;②当<s≤时,动点P在线段DC上运动,此时y由2到1逐渐减少;③当<s≤时,动点P在线段CB上运动,此时y=1保持不变;④当<s≤时,动点P在线段BA上运动,此时y由1到2逐渐增大;⑤当<s≤4时,动点P在线段AP上运动,此时y=2保持不变.结合函数图象,只有D选项符合要求.故选D.考点:动点问题的函数图象.6、B【解题分析】试题解析:假如平行四边形ABCD是矩形,OA=OC,OB=OD,AC=BD,∴OA=OB=1.故选B.点睛:对角线相等的平行四边形是矩形.7、C【解题分析】试题分析:用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].41码共20件,最多,41码是众数,故选C考点:方差;加权平均数;中位数;众数8、B【解题分析】

将A(1,1),B(3,1),C(2,2)的坐标分别代入直线y=x+b中求得b的值,再根据一次函数的增减性即可得到b的取值范围.【题目详解】解:直线y=x+b经过点B时,将B(3,1)代入直线y=x+b中,可得+b=1,解得b=-;

直线y=x+b经过点A时:将A(1,1)代入直线y=x+b中,可得+b=1,解得b=;

直线y=x+b经过点C时:将C(2,2)代入直线y=x+b中,可得1+b=2,解得b=1.

故b的取值范围是-≤b≤1.

故选B.【题目点拨】考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.9、C【解题分析】

通过函数图象可得,货车出发1小时走的路程为60千米,客车到达终点所用的时间为6小时,根据行程问题的数量关系可以求出货车和客车的速度,利用数形结合思想及一元一次方程即可解答.【题目详解】解:由函数图象,得:货车的速度为60÷1=60千米/小时,客车的速度为600÷6=100千米/小时,故A错误;设客车离开起点x小时后,甲、乙两人第一次相遇,根据题意得:100x=60+60x,解得:x=1.5,∴离开起点后,两车第一次相遇时,距离起点为:1.5×100=150(千米),故B错误;甲从起点到终点共用时为:600÷60=10(小时),故C正确;∵客车到达终点时,所用时间为6小时,货车先出发1小时,∴此时货车行走的时间为7小时,∴货车走的路程为:7×60=420(千米),∴客车到达终点时,两车相距:600﹣420=180(千米),故D错误;故选C.【题目点拨】本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.10、A【解题分析】

由题意得,x≥0

.故选A.11、D【解题分析】

根据方程有解确定出a的范围即可.【题目详解】∵关于x的方程(a-3)x=2019有解,∴a-3≠0,即a≠3,故选:D.【题目点拨】此题考查了一元一次方程的解,弄清方程有解的条件是解本题的关键.12、B【解题分析】

设全组共有x名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.二、填空题(每题4分,共24分)13、且【解题分析】

由题意可知方程根的判别式△>0,于是可得关于a的不等式,解不等式即可求出a的范围,再结合二次项系数不为0即得答案.【题目详解】解:根据题意,得:,且,解得:且.故答案为:且.【题目点拨】本题考查了一元二次方程的根的判别式和一元一次不等式的解法,属于基本题型,熟练掌握一元二次方程根的判别式和方程根的个数之间的关系是解题的关键.14、【解题分析】

由根与系数的关系可分别求得p、q的值,代入则可求得答案.【题目详解】解:∵关于x的方程x2+px+q=0的两根为-3和1,

∴-3+1=-p,-3×1=q,

∴p=2,q=-3,

∴q-p=-3-2=-1,

故答案为-1.【题目点拨】本题主要考查根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1•x2=.15、8【解题分析】

由菱形的,可得∠BAD=∠BCD=60°,则在Rt△AOB中根据勾股定理以及30°所对的直角边是斜边的一半,列方程可以求出AB的长,即可求出菱形周长.【题目详解】解:如图,∵ABCD为菱形∴∠BAD=∠BCD,BD⊥AC,O为AC、BD中点又∵∴∠BAD=∠BCD=60°∴∠BAC=∠BAD=30°在Rt△AOB中,BO=AB,设BO=x,根据勾股定理可得:解得x=1∴AB=2x=2∴菱形周长为8故答案为8【题目点拨】本题考查菱形的性质综合应用,灵活应用菱形性质是解题关键.16、【解题分析】

根据确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母即可得出答案.【题目详解】解:分式和的最简公分母是,故答案为:.【题目点拨】本题考查了最简公分母的定义:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.17、【解题分析】

根据勾股定理求解即可.【题目详解】x=.故答案为:.【题目点拨】本题考查了勾股定理,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.18、1【解题分析】分析:根据数量关系“路程=速度×时间”结合函数图象,即可得出v快=v慢,设两车相遇的时间为t,根据数量关系“路程=速度×时间”即可得出t•v慢=(t-2)•v快=276,解之即可得出t与v慢的值,将慢车的速度代入s=18v慢中即可求出A、B两地的距离.详解:根据函数图象可知:s=(14-2)v快=18v慢,

∴v快=v慢.

设两车相遇的时间为t,

根据函数图象可知:t•v慢=(t-2)•v快=276,

解得:t=6,v慢=46,

∴s=18v慢=18×46=1.

故答案为1.点睛:考查了函数的图象以及解一元一次方程,根据数量关系结合函数图象找出快、慢两车速度间的关系是解题的关键.三、解答题(共78分)19、(1)CP=8-3t;(2)见解析;(3)见解析;(4)见解析.【解题分析】

(1)直接利用即可求解;(2)根据线段垂直平分线的性质可得,列方程求解即可;(3)根据全等三角形的性质可得若,因为,,所以只需,列方程求出的值即可;(4)若,因为,所以需满足且,即且,没有符合条件的t的值,故不存在.【题目详解】解:(1);(2)若点位于线段的垂直平分线上,则,即,解得.所以存在,秒时点位于线段的垂直平分线上.(3)若,因为,,所以只需,即,解得,所以存在.(4)若,因为,所以需满足且,即且,所以不存在.【题目点拨】本题考查全等三角形的判定和性质及动点运动问题,对于运动型的问题,关键是用时间t表示出相应的线段的长度,能根据题意列方程求解.20、原式=,把代入得,原式=-1.【解题分析】试题分析:根据分式的混合运算法则先化简后再求值.试题解析:考点:分式的混合运算.21、(1)详见解析;(2)当∠G=90°时,四边形DEBF是菱形,理由详见解析【解题分析】

(1)根据已知条件证明DFBE,DF=BE,从而得出四边形DEBF为平行四边形,即可证明DEBF;(2)当∠G=90°时,四边形DEBF是菱形.先证明BF=DC=DF,再根据邻边相等的平行四边形是菱形,从而得出结论.【题目详解】证明:(1)在□ABCD中,ABCD,AB=CD,∵E、F分别为边AB、CD的中点,∴DF=DC,BE=AB,∴DFBE,DF=BE,∴四边形DEBF为平行四边形,∴DEBF(2)当∠G=90°时,四边形DEBF是菱形.理由:∵AGBD,∴∠DBC=∠G=90°,∴为直角三角形,又∵F为边CD的中点,∴BF=DC=DF∵四边形DEBF为平行四边形,∴四边形DEBF为菱形【题目点拨】本题考查了平行四边形的综合问题,掌握平行四边形的性质、菱形的性质是解题的关键.22、(1);(2)12.【解题分析】

(1)利用以及二次根式运算法则计算即可;(2)根据=计算即可.【题目详解】(1)=()=;(2)∵,,∴==.【题目点拨】本题主要考查了二次根式的化简计算,熟练掌握相关公式是解题关键.23、(1)中位数是次,众数是次;(2)人.【解题分析】

(1)根据平均数、中位数和众数的定义求解可得;(2)用总人数乘以样本中使用共享单车次数在2次以上(含2次)的学生所占比例即可得.【题目详解】(1)(次)次数从小到大排列后,中间两个数是与中位数是次共享单车的使用次数中,出现最多的是次众数是次(2)即该校这天使用共享单车次数在次以上(含次)的学生约有人.【题目点拨】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.24、(1)45%,60;(2)见解析18;(3)7,7.2;(4)780【解题分析】

(1)根据睡眠时间为6小时、7小时、8小时、9小时的百分比之和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论