2024届山东省邹平市八年级数学第二学期期末检测试题含解析_第1页
2024届山东省邹平市八年级数学第二学期期末检测试题含解析_第2页
2024届山东省邹平市八年级数学第二学期期末检测试题含解析_第3页
2024届山东省邹平市八年级数学第二学期期末检测试题含解析_第4页
2024届山东省邹平市八年级数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省邹平市八年级数学第二学期期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知:如图,是正方形内的一点,且,则的度数为()A. B. C. D.2.如图,将点P(-2,3)向右平移n个单位后落在直线y=2x-1上的点P'处,则n等于()A.4 B.5 C.6 D.73.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°4.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.6.5 D.8.55.观察图中的函数图象,则关于x的不等式ax-bx>c的解集为()A.x<2 B.x<1 C.x>2 D.x>16.如图,四边形中,,,于,于,若,的面积为,则四边形的边长的长为()A. B. C. D.7.若分式2aba+b中a,b都扩大到原来的3倍,则分式2abA.扩大到原来3倍 B.缩小3倍 C.是原来的13 D.8.如图所示,在中,,、是斜边上的两点,且,将绕点按顺时针方向旋转后得到,连接.有下列结论:①;②;③;④其中正确的有()A.①②③④ B.②③ C.②③④ D.②④9.下列各点中,与点(-3,4)在同一个反比例函数图像上的点是A.(2,-3) B.(3,4) C.(2,-6) D.(-3,-4)10.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③2S四边形AEPF=S△ABC;④BE+CF=EF.当∠EPF在△ABC内绕顶点P旋转时(点E与A、B重合).上述结论中始终正确的有()A.1个 B.2个 C.3个 D.4个11.一次函数的图象经过原点,则的值为()A. B. C. D.12.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的长方形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=-x+5 D.y=-x+10二、填空题(每题4分,共24分)13.某初中校女子排球队队员的年龄分布:年龄/(岁)13141516频数1452该校女子排球队队员的平均年龄是_____岁.(结果精确到0.1)14.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到,第2次移动到……,第n次移动到,机器人移动第2018次即停止,则的面积是______.15.中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化.如图,如果所在位置的坐标为(﹣1,﹣1),所在位置的坐标为(2,﹣1),那么,所在位置的坐标为__________.16.如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠ECD=___°.17.如图,在□ABCD中,对角线AC、BD相交于O,AC+BD=10,BC=3,则△AOD的周长为.18.当x=______时,分式的值是1.三、解答题(共78分)19.(8分)如图,已知抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),与y轴交于点C.(1)求抛物线解析式;(2)在直线BC上方的抛物线上有点P,使△PBC面积为1,求出点P的坐标.20.(8分)在平面直角坐标系中,ΔABC的位置如图所示.点A,B,C的坐标分别为(-3,-3),(-1,-1),(0,-2),根据下面要求完成解答.(1)作ΔABC关于点C成中心对称的ΔA(2)将ΔA1B1C(3)在x轴上求作一点P,使PA2+P21.(8分)如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.22.(10分)如图,每个小方格都是边长为1个单位长度的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).(1)画出△ABC向上平移4个单位长度后得到的△A1B1C1;(1)画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1.23.(10分)学校准备购买纪念笔和记事本奖励同学,纪念笔的单价比记事本的单价多4元,且用30元买记事本的数量与用50元买纪念笔的数量相同.求纪念笔和记事本的单价.24.(10分)如图,在平面直角坐标系xOy中,一次函y=kx+b的图象经过点A(-2,4),且与正比例函数的图象交于点B(a,2).(1)求a的值及一次函数y=kx+b的解析式;(2)若一次函数y=kx+b的图象与x轴交于点C,且正比例函数y=-x的图象向下平移m(m>0)个单位长度后经过点C,求m的值;(3)直接写出关于x的不等式0<<kx+b的解集.25.(12分)在正方形中,平分交边于点.(1)尺规作图:过点作于;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接,求的度数.26.如图,四边形ABCD的四个顶点都在网格上,且每个小正方形的边长都为1(1)求四边形ABCD的面积;(2)求∠BCD的度数.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】

利用等边三角形和正方形的性质求得,然后利用等腰三角形的性质求得的度数,从而求得的度数,利用三角形的内角和求得的度数.【题目详解】解:,是等边三角形,,,,,,同理可得,,故选:.【题目点拨】本题考查了正方形的性质及等边三角形的性质,解题的关键是根据等腰三角形的性质求得有关角的度数,难度不大.2、A【解题分析】

由平移的性质得出P'的坐标,把P'点坐标代入直线y=2x-1上即可求出n的值;【题目详解】由题意得P'(-2+n,3),则3=2(-2+n)-1,解得n=4.故答案为A.【题目点拨】本题主要考查了一次函数的图象,平移的性质,掌握一次函数的图象,平移的性质是解题的关键.3、D【解题分析】

首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形为菱形.所以根据菱形的性质进行判断.【题目详解】解:四边形是用两张等宽的纸条交叉重叠地放在一起而组成的图形,,,四边形是平行四边形(对边相互平行的四边形是平行四边形);过点分别作,边上的高为,.则(两纸条相同,纸条宽度相同);平行四边形中,,即,,即.故正确;平行四边形为菱形(邻边相等的平行四边形是菱形).,(菱形的对角相等),故正确;,(平行四边形的对边相等),故正确;如果四边形是矩形时,该等式成立.故不一定正确.故选:.【题目点拨】本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.4、C【解题分析】

利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【题目详解】解:由勾股定理得,斜边=122所以,斜边上的中线长=12×13=6.1故选:C.【题目点拨】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.5、D【解题分析】

根据图象得出两图象的交点坐标是(1,2)和当x<1时,ax<bx+c,推出x<1时,ax<bx+c,即可得到答案.【题目详解】解:由图象可知,两图象的交点坐标是(1,2),当x>1时,ax>bx+c,∴关于x的不等式ax-bx>c的解集为x>1.故选:D.【题目点拨】本题主要考查对一次函数与一元一次不等式的关系的理解和掌握,能根据图象得出正确结论是解此题的关键.6、A【解题分析】

先证明△ACD≌△BEA,在根据△ABC的面积为8,求出BE,然后根据勾股定理即可求出AB.【题目详解】解:∵BE⊥AC,CD⊥AC,∴∠ACD=∠BEA=90°,∴∠CDB+∠DCA=90°,又∵∠DAB=∠DAC+∠BAC=90°在△ACD和△AEB中,∴△ACD≌△BEA(AAS)∴AC=BE∵△ABC的面积为8,∴,解得BE=4,在Rt△ABE中,.故选择:A.【题目点拨】本题主要考查了三角形全等和勾股定理的知识点,熟练三角形全等的判定和勾股定理是解答此题的关键.7、A【解题分析】

把分式中的分子,分母中的

a,b都同时变成原来的3倍,就是用

3a,

3b分别代替式子中的a

,

b,看得到的式子与原式子的关系.【题目详解】将分式2aba+b中a,b都扩大到原来的3倍,得到18ab3a+3b=6aba+b,则6aba+b是2aba+b的【题目点拨】本题考查分式的性质,解题的关键是掌握分式的性质.8、C【解题分析】

利用旋转性质可得∠DAF=90°,△AFB≌△ADC.再根据全等三角形的性质对②④判断即可,根据可求,即可判断③正确.【题目详解】解:∵△ADC绕A顺时针旋转90°后得到△AFB,∴△AFB≌△ADC,∴∠BAF=∠CAD,BF=CD,故②④正确;由旋转旋转可知∠DAF=90°,又∵,∴∠EAF=∠DAF-∠DAE=90°-45°=45°=∠DAE故③正确;无法判断BE=CD,故①错误.故选:C.【题目点拨】本题考查了旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握旋转的基本性质,找出图形对应关系.属于中考常考题型.9、C【解题分析】

先根据反比例函数中k=xy的特点求出k的值,再对各选项进行逐一检验即可.【题目详解】∵反比例函数y=kx过点(−3,4),∴k=(−3)×4=−12,A.∵2×3=6≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误;B.∵3×4=12≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误;C.∵2×-6=−12,∴此点与点(−3,4)在同一个反比例函数图象上,故本选项正确;D.∵(−3)×(−4)=12≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误。故选C.【题目点拨】此题考查反比例函数图象上点的坐标特征,解题关键在于求出k的值10、C【解题分析】

根据等腰直角三角形的性质可得AP⊥BC,AP=PC,∠EAP=∠C=45°,根据同角的余角相等求出∠APE=∠CPF,然后利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,判定①正确,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,判定②正确;根据等腰直角三角形的斜边等于直角边的倍表示出EF,可知EF随着点E的变化而变化,判定④错误,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半,判定③正确【题目详解】如图,连接EF,∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,;在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①正确;∴△EFP是等腰直角三角形,故②正确;根据等腰直角三角形的性质,EF=PE,所以,EF随着点E的变化而变化,只有当点E为AB的中点时,EF=PE=AP,在其它位置EF≠AP,故④错误;∵△APE≌△CPF,∴S△APE=S△CPF,∴S四边形AEPF=S△APF+S△APE=S△APF+S△CPF=S△APC=S△ABC,∴2S四边形AEPF=S△ABC故③正确,综上所述,正确的结论有①②③共3个.故选C.【题目点拨】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE≌△CPF是解题的关键,也是本题的突破点.11、B【解题分析】分析:根据一次函数的定义及函数图象经过原点的特点,求出m的值即可.详解:∵一次函数的图象经过原点,∴m=1.故选B.点睛:本题考查的是一次函数图象上点的坐标特点,即一次函数y=kx+b(k≠1)中,当b=1时函数图象经过原点.12、C【解题分析】

设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D.

C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=−x+5,故选C.点睛:本题主要考查矩形的性质及点的坐标的意义,根据坐标的意义得出x,y之间的关系是解题的关键.二、填空题(每题4分,共24分)13、14.1.【解题分析】

根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.【题目详解】该校女子排球队队员的平均年龄是≈14.1(岁),故答案为:14.1.【题目点拨】此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题.14、504m2【解题分析】

由OA=2n知OA=+1=1009,据此得出AA=1009-1=1008,据此利用三角形的面积公式计算可得.【题目详解】由题意知OA=2n,∵2018÷4=504…2,∴OA=+1=1009,∴AA=1009-1=1008,则△OAA的面积是×1×1008=504m2【题目点拨】此题考查规律型:数字变换,解题关键在于找到规律15、(﹣3,2)【解题分析】由“士”的位置向右平移减1个单位,在向上平移1个单位,得所在位置的坐标为(-3,2),

故答案是:(-3,2).16、17.1.【解题分析】

根据矩形的性质由∠ADF求出∠CDF,再由等腰三角形的性质得出∠ECD即可.【题目详解】解:∵四边形ABCD是矩形,∴∠ADC=90°,∵∠ADF=21°,∴∠CDF=∠ADC﹣∠ADF=90°﹣21°=61°,∵DF=DC,∴∠ECD=,故答案为:17.1.【题目点拨】本题考查了矩形的性质,等腰三角形的性质,解本题的关键是求出∠CDF.是一道中考常考的简单题.17、8【解题分析】试题分析:根据平行四边形的性质可得:OA+OD=(AC+BD)=5,AD=BC=3,则△AOD的周长为5+3=8.考点:平行四边形的性质.18、1【解题分析】

直接利用分式的值为零则分子为零进而得出答案.【题目详解】∵分式的值是1,∴x=1.故答案为:1.【题目点拨】此题主要考查了分式的值为零的条件,正确把握分式的性质是解题关键.三、解答题(共78分)19、(1)y=﹣x2+x+1;(2)点P的坐标为(1,)或(2,1).【解题分析】

(1)根据抛物线y=ax2+bx+1与x轴分别交于A(-1,0),B(3,0),可以求得该抛物线的解析式;(2)根据题意和(1)中的抛物线解析式可以求得点C的坐标,从而可以得到直线BC的函数解析式,然后根据在直线BC上方的抛物线上有点P,使△PBC面积为1,即可求得点P的坐标.【题目详解】(1)∵抛物线y=ax2+bx+1与x轴分别交于A(-1,0),B(3,0),∴,解得,,∴抛物线的解析式为y=-x2+x+1;(2)∵y=-x2+x+1,∴当x=0时,y=1,即点C的坐标为(0,1),∵B(3,0),C(0,1),∴直线BC的解析式为:y=−x+1,设点P的坐标为(p,-p2+p+1),将x=p代入y=−x+1得y=−p+1,∵△PBC面积为1,∴,解得,p1=1,p2=2,当p1=1时,点P的坐标为(1,),当p2=2时,点P的坐标为(2,1),即点P的坐标为(1,)或(2,1).【题目点拨】本题考查抛物线与x轴的交点、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解答本题的关键是明确题意,利用二次函数的性质解答.20、(1)见解析;(2)见解析;(3)点P的坐标是(6,0)【解题分析】

(1)根据关于原点对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可;

(2)利用点平移的坐标变换规律写出点A、B、C的对应点A2、B2、C2的坐标,然后描点即可得到△A2B2C2;(3)过点A2作关于x轴的对称点A'2,连接A'2C2,则PA【题目详解】解:(1),(2)如图:(3)过点A2作关于x轴的对称点A'2∴当PA2+P此时,点P的坐标是:(6,【题目点拨】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.21、(1)证明见解析;(2)1.【解题分析】

(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可;(2)先判断出∠BOC=90°,再利用直角三角形斜边的中线等于斜边的一半,求出EF即可.【题目详解】证明:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DE=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M为EF的中点,OM=3,∴EF=2OM=1.由(1)有四边形DEFG是平行四边形,∴DG=EF=1.22、(1)如图所示:△A1B1C1,即为所求;见解析;(1)如图所示:△A1B1C1,即为所求,见解析.【解题分析】

(1)根据网格结构找出点A,B,C平移后的对应点A1,B1,C连接即可(1)根据网格结构找出点A,B,C绕点O逆时针旋转90°后得到的A1,B1,C1,连接即可【题目详解】(1)如图所示:△A1B1C1,即为所求;(1)如图所示:△A1B1C1,即为所求.【题目点拨】此题考查作图-旋转变换,作图-平移变换,熟练掌握作图的操作是解题关键23、纪念笔和记事本的单价分别为1元,6元.【解题分析】

首先设纪念笔单价为x元,则记事本单价为(x-4)元,根据题意可得等量关系:30元买记事本的数量与用50元买纪念笔的数量相同,由等量关系可得方程,进而解答即可.【题目详解】解:设纪念笔单价为x元,则记事本的单价为(x-4)元.由题意,得:.解得:x=1.经检验x=1是原方程的解,且符合题意.∴纪念笔的单价为1元,∴记事本的单价:1-4=6(元).答:纪念笔和记事本的单价分别为1元,6元.【题目点拨】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.24、(1)y=2x+8;(2)m=;(3)-3<x<1【解题分析】

(1)先确定B的坐标,然后根据待定系数法求解析式;

(2)先求得C的坐标,然后根据题意求得平移后的直线的解析式,把C的坐标代入平移后的直线的解析式,即可求得M的值;

(3)找出直线y=-x落在y=kx+b的下方且在x轴上方的部分对应的x的取值范围即可.【题目详解】解:(1)∵正比例函数的图象经过点B(a,2),∴2=-a,解得,a=-3,∴B(-3,2),∵一次函数y=kx+b的图象

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论