版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福州十九中学2024届八年级数学第二学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在同一直角坐标系中,函数和的图象相交于点A,则不等式的解集是A. B. C. D.2.如图,四边形和四边形是以点为位似中心的位似图形,若,四边形的面积等于4,则四边形的面积为()A.3 B.4 C.6 D.93.某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)²=182 B.50+50(1+x)+50(1+x)²=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)²=1824.下列判断正确的是()A.四条边相等的四边形是正方形 B.四个角相等的四边形是矩形C.对角线垂直的四边形是菱形 D.对角线相等的四边形是平行四边形5.化简的结果是().A. B. C. D.6.下列说法:①对角线互相垂直的四边形是菱形;②矩形的对角线垂直且互相平分;③对角线相等的四边形是矩形;④对角线相等的菱形是正方形;⑤邻边相等的矩形是正方形.其中正确的是()A.个 B.个 C.个 D.个7.如图,四边形是平行四边形,对角线、交于点,是的中点,以下说法错误的是()A. B. C. D.8.下列一次函数中,y随x增大而减小的是A. B. C. D.9.如图,在△ABC中,点D、E、F分别是BC、AB、AC的中点,如果△ABC的周长为20,那么△DEF的周长是()A.20 B.15 C.10 D.510.一组数据:3、4、4、5,若添加一个数4,则发生变化的统计量是()A.平均数 B.众数 C.中位数 D.标准差11.如图,已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(10,0),点B(0,6),点P为BC边上的动点,将△OBP沿OP折叠得到△OPD,连接CD、AD.则下列结论中:①当∠BOP=45°时,四边形OBPD为正方形;②当∠BOP=30°时,△OAD的面积为15;③当P在运动过程中,CD的最小值为1﹣6;④当OD⊥AD时,BP=1.其中结论正确的有()A.1个 B.1个 C.3个 D.4个12.在“爱我莒州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲8、7、9、8、8;乙:7、9、6、9、9,则下列说法中错误的是()A.甲得分的众数是8 B.乙得分的众数是9C.甲得分的中位数是9 D.乙得分的中位数是9二、填空题(每题4分,共24分)13.把直线沿轴向上平移5个单位,则得到的直线的表达式为_________.14.反比例函数与一次函数的图像的一个交点坐标是,则=________.15.如图,在四边形ABCD中,对角线AC,BD交于点O,且OA=OC,OB=OD,要使四边形ABCD为矩形,则需要添加的条件是_______(只填一个即可).16.小明从家跑步到学校,接着马上原路步行回家.如图所示为小明离家的路程与时间的图像,则小明回家的速度是每分钟步行________m.17.如图,在菱形中,边长为.顺次连结菱形各边中点,可得四边形顺次连结四边形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;按此规律继续....四边形的周长是____,四边形的周长是____.18.点P是菱形ABCD的对角线AC上的一个动点,已知AB=1,∠ADC=120°,点M,N分别是AB,BC边上的中点,则△MPN的周长最小值是______.三、解答题(共78分)19.(8分)如图,一次函数的图象与正比例函数的图象交于点.(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的的取值范围;(3)求的面积.20.(8分)如图,一次函数y=2x+4的图象与x,y轴分别相交于点A,B,以AB为边作正方形ABCD(点D落在第四象限).(1)求点A,B,D的坐标;(2)联结OC,设正方形的边CD与x相交于点E,点M在x轴上,如果△ADE与△COM全等,求点M的坐标.21.(8分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,求菱形的面积及线段DH的长.22.(10分)已知一次函数与正比例函数都经过点,的图像与轴交于点,且.(1)求与的解析式;(2)求⊿的面积.23.(10分)解不等式组:,并写出所有整数解.24.(10分)如图,在三角形纸片中,的平分线交于点D,将沿折叠,使点C落在点A处.(1)求证:.(2)若,求的度数.25.(12分)已知:如图,平面直角坐标系中,,,点C是x轴上一点,点D为OC的中点.(1)求证:BD∥AC;(2)若点C在x轴正半轴上,且BD与AC的距离等于2,求点C的坐标;(3)如果于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.26.如图,△ABC是等腰直角三角形,延长BC至E使BE=BA,过点B作BD⊥AE于点D,BD与AC交于点F,连接EF.(1)求证:BF=2AD;(2)若CE=,求AC的长.
参考答案一、选择题(每题4分,共48分)1、C【解题分析】
先利用得到,再求出m得到,接着求出直线与x轴的交点坐标为,然后写出直线在x轴上方和在直线下方所对应的自变量的范围.【题目详解】当时,,则,把代入y2得,解得,所以,解方程,解得,则直线与x轴的交点坐标为,所以不等式的解集是,故选C.【题目点拨】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数的值大于或小于的自变量x的取值范围;从函数图象的角度看,就是确定直线在x轴上或下方部分所有的点的横坐标所构成的集合.2、D【解题分析】
利用位似的性质得到AD:A'D'=OA:OA'=2:3,再利用相似多边形的性质得到得到四边形A'B'C'D'的面积.【题目详解】解:∵四边形ABCD和四边形A'B'C'D'是以点O为位似中心的位似图形,AD:A'D'=OA:04'=2:3,∴四边形ABCD的面积:四边形A'B'C'D'的面积=4:9,又∵四边形ABCD的面积等于4,∴四边形A'B'C'D'的面积为9.故选:D【题目点拨】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫位似中心,注意:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行(或共线)3、B【解题分析】
设二、三月份平均每月的增长率为x,根据某农机厂一月份生产零件50万个,第一季度共生产1万个,可列出方程.【题目详解】解:设二、三月份平均每月的增长率为x,则二月份生产零件50(1+x)个,三月份生产零件50(1+x)2个,则得:50+50(1+x)+50(1+x)2=1.故选:B.【题目点拨】本题考查理解题意的能力,关键设出增长率,表示出每个月的生产量,以一季度的产量做为等量关系列出方程.4、B【解题分析】
由题意根据正方形、矩形、菱形、平行四边形的判定分别对每一项进行分析判断即可.【题目详解】解:A.四条边相等的四边形是菱形,故本选项错误;B.四个角相等的四边形是矩形,故本选项正确;C.对角线垂直的平行四边形是菱形,故本选项错误;D.对角线互相平分的四边形是平行四边形,故本选项错误.故选:B.【题目点拨】本题考查正方形、平行四边形、矩形以及菱形的判定.注意掌握正方形是菱形的一种特殊情况,且正方形还是一种特殊的矩形.5、B【解题分析】
根据三角形法则计算即可解决问题.【题目详解】解:原式,故选:B.【题目点拨】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.6、B【解题分析】
利用正方形的判定和性质,菱形的判定和性质,矩形的判定和性质进行依次判断可求解.【题目详解】解:①对角线互相垂直的四边形不一定是菱形,故①错误;
②矩形的对角线相等且互相平分,故②错误;
③对角线相等的四边形不一定是矩形,故③错误;
④对角线相等的菱形是正方形,故④正确,
⑤邻边相等的矩形是正方形,故⑤正确
故选B.【题目点拨】本题考查了正方形的判定和性质,菱形的判定和性质,矩形的判定和性质,灵活运用这些性质和判定解决问题是本题的关键.7、D【解题分析】
由平行四边形的性质和三角形中位线定理得出选项A、B、C正确;由OE≠BE,得出∠BOE≠∠OBC,选项D错误;即可得出结论.【题目详解】解:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,AB∥DC,AB=CD,
又∵点E是BC的中点,
∴OE是△BCD的中位线,
∴OE=DC,OE∥DC,,
∴∠BOE=∠ODC,
∴选项A、B、C正确;
∵OE≠BE,
∴∠BOE≠∠OBC,
∴选项D错误;
故选:D.【题目点拨】此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线定理:三角形的中位线平行且等于三角形第三边的一半.8、D【解题分析】∵A,B,C中,自变量的系数大于0,∴y随x增大而增大;∵D中,自变量的系数小于0,∴y随x增大而减小;故选D.9、C【解题分析】试题分析::∵D、E分别是△ABC的边BC、AB的中点,∴DE=AC,同理EF=BC,DF=AB,∴C△DEF=DE+EF+DF=(AC+BC+AB)=×20=1.故选C.考点:三角形的中位线定理10、D【解题分析】
依据平均数、中位数、众数、标准差的定义和公式分别计算新旧两组数据的平均数、中位数、众数、标准求解即可.【题目详解】原数据的3,4,4,5的平均数为,原数据的中位数为,原数据的众数为4,标准差为;新数据3,4,4,4,5的平均数为,新数据3,4,4,4,5的中位数为4,新数据3,4,4,4,5的众数为4,新数据3,4,4,4,5的标准差为,∴添加一个数据4,标准差发生变化,故选D.【题目点拨】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.11、D【解题分析】
①由矩形的性质得到,根据折叠的性质得到,,,推出四边形是矩形,根据正方形的判定定理即可得到四边形为正方形;故①正确;②过作于,得到,,根据直角三角形的性质得到,根据三角形的面积公式得到的面积为,故②正确;③连接,于是得到,即当时,取最小值,根据勾股定理得到的最小值为;故③正确;④根据已知条件推出,,三点共线,根据平行线的性质得到,等量代换得到,求得,根据勾股定理得到,故④正确.【题目详解】解:①四边形是矩形,,将沿折叠得到,,,,,,,,四边形是矩形,,四边形为正方形;故①正确;②过作于,点,点,,,,,,,的面积为,故②正确;③连接,则,即当时,取最小值,,,,,即的最小值为;故③正确;④,,,,,,三点共线,,,,,,,,,故④正确;故选:.【题目点拨】本题考查了正方形的判定和性质,矩形的判定和性质,折叠的性质,勾股定理,三角形的面积的计算,正确的识别图形是解题的关键.12、C【解题分析】
众数是在一组数据中出现次数最多的数;将一组数据按从小到大顺序排列,处于最中间位置的一个数据,或是最中间两个数据的平均数称为中位数;【题目详解】∵甲8、7、9、8、8;∴甲的众数为8,中位数为8∵乙:7、9、6、9、9∴已的众数为9,中位数为9故选C.【题目点拨】本题考查的是众数,中位数,熟练掌握众数,中位数是解题的关键.二、填空题(每题4分,共24分)13、【解题分析】
根据上加下减,左加右减的法则可得出答案.【题目详解】解:沿y轴向上平移5个单位得到直线:,即.故答案是:.【题目点拨】本题考查一次函数的图象变换,注意上下移动改变的是y,左右移动改变的是x,规律是上加下减,左加右减.14、-6【解题分析】
根据题意得到ab=2,b-a=3,代入原式计算即可.【题目详解】∵反比例函数与一次函数y=x+3的图象的一个交点坐标为(m,n),∴b=,b=a+3,∴ab=2,b-a=3,∴==2×(-3)=-6,故答案为:-6【题目点拨】此题考查反比例函数与一次函数的交点问题,解题关键在于得到ab=2,b-a=315、∠DAB=90°.【解题分析】
根据对角线互相平分线的四边形为平行四边形可得四边形ABCD是平行四边形,添加条件∠DAB=90°可根据有一个角是直角的平行四边形是矩形进行判定.【题目详解】解:可以添加条件∠DAB=90°,∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵∠DAB=90°,∴四边形ABCD是矩形,故答案为∠DAB=90°.【题目点拨】此题主要考查了矩形的判定,关键是掌握矩形的判定定理.16、1【解题分析】
先分析出小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),再根据路程、时间、速度的关系即可求得.【题目详解】解:通过读图可知:小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),
所以小明回家的速度是每分钟步行10÷10=1(米).
故答案为:1.【题目点拨】本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解.17、,.【解题分析】
根据菱形的性质,三角形中位线的性质以及勾股定理求出四边形各边长,得出规律求出即可.【题目详解】解:∵菱形ABCD中,边长为10,∠A=60°,顺次连结菱形ABCD各边中点,∴是等边三角形,四边形是矩形,四边形是菱形,∴,,,∴四边形的周长是:,同理可得出:,,…所以:,四边形的周长,∴四边形的周长是:,故答案为:20;.【题目点拨】此题主要考查了三角形的中位线的性质,菱形的性质以及矩形的性质和中点四边形的性质等知识,根据已知得出边长变化规律是解题关键.18、.【解题分析】
先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1,再求出MN的长即可求出答案.【题目详解】如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,连结MN,过点B作BE⊥MN,垂足为点E,∴ME=MN,在Rt△MBE中,,BM=∴ME=,∴MN=∴△MPN的周长最小值是+1.故答案为+1.【题目点拨】本题考查的是轴对称-最短路线问题及菱形的性质,熟知两点之间线段最短的知识是解答此题的关键.三、解答题(共78分)19、(1)一次函数表达式为y=2x-2;正比例函数为y=x;(2)x<2;(3)1.【解题分析】
(1)将(0,-2)和(1,0)代入解出一次函数的解析式,将M(2,2)代入正比例函数解答即可;(2)根据图象得出不等式的解集即可;(3)利用三角形的面积公式计算即可.【题目详解】经过和,解得,,一次函数表达式为:;把代入得,点,直线过点,,,正比例函数解析式.由图象可知,当时,一次函数与正比例函数相交;时,正比例函数图象在一次函数上方,故:时,.如图,作MN垂直x轴,则,,的面积为:.【题目点拨】本题考查了一次函数的图象和性质问题,解题的关键是根据待定系数法解出解析式.20、(1)A(-2,0),B(0,4),D(2,-2);(2)M(5,0).【解题分析】
(1)由于一次函数y=2x+4的图象与x、y轴分别交于点A、B,所以利用函数解析式即可求出A、B两点的坐标,然后作DF⊥x轴于点F,由四边形ABCD是正方形可以得到∠BAD=∠AOB=∠AFD=90º,AB=AD,接着证明△BAO≌△ADF,最后利用全等三角形的性质可以得到DF=AO=2,AF=BO=4,从而求出点D的坐标;(2)过点C作CG⊥y轴于G,连接OC,作CM⊥OC交x轴于M,用求点D的方法求得点C的坐标为(4,2),得出OC=2,由A、B的坐标得到AB=2,从而OC=AB=AD,根据△ADE与△COM全等,利用全等三角形的性质可知OM=AE,即OA=EM=2,利用C、D的坐标求出直线CD的解析式,得出点E的坐标,根据EM=2,即可求出点M的坐标.【题目详解】解:(1)∵一次函数y=2x+4的图象与x,y轴分别相交于点A,B,∴A(-2,0),B(0,4),∴OA=2,OB=4,如图1,过点D作DF⊥x轴于F,∴∠DAF+∠ADF=90°,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAF+∠BAO=90°,∴∠ADF=∠BAO,在△ADF和△BAO中,,∴△ADF≌△BAO(AAS),∴DF=OA=2,AF=OB=4,∴OF=AF-OA=2,∵点D落在第四象限,∴D(2,-2);(2)如图2,过点C作CG⊥y轴于G,连接OC,作CM⊥OC交x轴于M,同(1)求点D的方法得,C(4,2),∴OC==2,∵A(-2,0),B(0,4),∴AB=2,∵四边形ABCD是正方形,∴AD=AB=2=OC,∵△ADE与△COM全等,且点M在x轴上,∴△ADE≌△OCM,∴OM=AE,∵OM=OE+EM,AE=OE+OA,∴EM=OA=2,∵C(4,2),D(2,-2),∴直线CD的解析式为y=2x-6,令y=0,∴2x-6=0,∴x=3,∴E(3,0),∴OM=5,∴M(5,0).故答案为(1)A(-2,0),B(0,4),D(2,-2);(2)M(5,0).【题目点拨】本题考查了一次函数图象上点的坐标特征,正方形的性质,全等三角形的判定与性质.21、【解题分析】
先根据菱形的面积等于对角线乘积的一半求出菱形的面积,然后再根据勾股定理求出菱形的边长,利用菱形面积的以一求解方法,边长乘高即可求得DH的长.【题目详解】在菱形ABCD中,AC⊥BD,∵AC=24,BD=10,∴AO=AC=12,BO=BD=5,S菱形ABCD=,∴AB==13,∵S菱形ABCD=AB·DH=120,∴DH=.【题目点拨】本题考查了菱形的性质、勾股定理、菱形的面积等,注意菱形的面积等于对角线乘积的一半,也等于底乘高.22、(1)或;⊿的面积为15个平方单位.【解题分析】分析:本题的⑴求正比例函数解析式可通过来解决.而要求的解析式则还需要一个点的坐标,这个通过来解决;⑵问通过结合⑴问的坐标来确定⊿解底边长和高长,利用三角形的面积公式求解.详解:⑴.∵正比例函数过点;∴解得:∴根据勾股定理可求设点的坐标为.又∵,则解得或∴点的坐标为或又∵一次函数同时也过点∴或;分别解得或∴或⑵.根据⑴的解答画出示意图,过作轴∵,的坐标为或∴∴⊿=⊿=∴综上所解,⊿的面积为15个平方单位.点睛:本题要注意两点:其一.所需线段的长度可以由坐标直接求出,也可能借助于勾股定理计算;其二.要注意根据绝对值的意义进行分类讨论,也就是可能有多解.23、1,2,3,4,5,6【解题分析】
根据不等式的性质依次求出各不等式的解集,再求出公共解集,即可求解.【题目详解】解解不等式①得x≥1,解不等式②得x<故不等式组的解集为1≤x<故整数解为1,2,3,4,5,6【题目点拨】此题主要考查不等式的解集,解题的关键是熟知不等式的性质.24、(1)证明见解析;(2)【解题分析】
(1)由角平分线的定义可得,由折叠图形的性质可得,DE垂直平分AC,可得,即可求证;(2)由(1)可得,在三角形ABC中,根据内角和等于180度即可求解.【题目详解】解:(1)平分,.∵将沿DE对折后,点C落在点A处,垂直平分,,.(2)由(1)可得,,∴.【题目点拨】本题考查折叠图形的性质、角平分线的定义、三角形内角和定理和垂直平分线的性质,解题的关键是灵活运用各种知识证明和求解,是个较简单的几何题.25、(1)BD∥AC;(2);(3)【解题分析】
(1)由A与B的坐标求出OA与OB的长,进而得到B为OA的中点,而D为OC的中点,利用中位线定理即可得证;(2)如图1,作BF⊥AC于点F,取AB的中点G,确定出G坐标,由平行线间的距离相等求出BF的长,在直角三角形ABF中,利用斜边上的中线等于斜边的一半求出FG的长,进而确定出三角形BFG为等边三角形,即∠BAC=30°,设OC=x,则有AC=2x,利用勾股定理表示出OA,根据OA的长求出x的值,即可确定出C坐标;(3)如图2,当四边形ABDE为平行四边形时,AB∥DE,进而得到DE垂直于OC,再由D为OC中点,得到OE=CE,再由OE垂直于AC,得到三角形AOC为等腰直角三角形,求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年天津家居装修施工协议样本版
- 2024年产品区域销售代理合同模板版B版
- 2024年度化妆品短视频制作合同
- 2024专项信息保密协议模板版A版
- 2024个人工作聘用合同模板版B版
- 2024年度地产项目工程承包合同
- 2024年劳动协议终止声明范本版B版
- 2024年度三方战略合作保密协议版
- 2024年专业职工接送车辆运输协议条款版B版
- 湖南省长沙市2024届高三化学上学期月考三试题含解析
- 11《百年孤独(节选)》练习(含答案)统编版高中语文选择性必修上册
- 制药工程师招聘笔试题及解答(某大型国企)
- 《SMT防静电培训》课件
- 安徽省鼎尖教育2024-2025学年高一上学期11月期中考试物理试题(无答案)
- 校园交通安全中小学交通安全教育主题班会课件
- 2024-2025部编版语文一年级上册8-比尾巴Repaired
- 2023年广东省高考化学真题(含答案解析)
- 2025年高考政治一轮复习:统编版必修一到必修四综合测试卷(含答案解析)
- 河南开放大学法学本科《法律社会学》作业练习1-3+终考试题及答案
- 停车场硬化施工方案及管理措施
- 部编 2024版历史七年级上册期末(全册)复习卷(后附答案及解析)
评论
0/150
提交评论