版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省泰州市数学八下期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.用科学记数法表示为()A. B. C. D.2.已知实数满足,则代数式的值是()A.7 B.-1 C.7或-1 D.-5或33.如图,在平行四边形ABCD中,DE平分∠ADC交BC于E,AF⊥DE,垂足为F,已知∠DAF=50°,则∠B=()A.50° B.40° C.80° D.100°4.正方形具有而菱形不具有的性质是()A.对角线互相平分 B.对角线相等C.对角线平分一组对角 D.对角线互相垂直5.已知多项式x2+bx+c分解因式为(x+3)(x﹣1),则b、c的值为()A.b=3,c=﹣2 B.b=﹣2,c=3 C.b=2,c=﹣3 D.b=﹣3,c=﹣26.已知关于x的一元二次方程2x2﹣mx﹣4=0的一个根为m,则m的值是()A.2 B.﹣2 C.2或﹣2 D.任意实数7.如果式子有意义,那么x的范围在数轴上表示为()A. B.C. D.8.无理数在两个整数之间,下列结论正确的是()A.2~3之间 B.3~4之间 C.4~5之间 D.5~6之间9.下列方程中,是一元二次方程的是()A. B. C. D.10.下列所述图形中,既是中心对称图形,又是轴对称图形的是()A.矩形 B.平行四边形 C.正五边形 D.正三角形11.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲 B.乙 C.丙 D.丁12.下列条件中,不能判定四边形是正方形的是()A.对角线互相垂直且相等的四边形 B.一条对角线平分一组对角的矩形C.对角线相等的菱形 D.对角线互相垂直的矩形二、填空题(每题4分,共24分)13.已知直线与x轴的交点在、之间(包括、两点),则的取值范围是__________.14.若数据8,9,7,8,x,3的平均数是7,则这组数据的众数是________.15.当分式有意义时,x的取值范围是__________.16.如图,四边形ABCD是平行四边形,AE平分∠BAD交CD于点E,AE的垂直平分线交AB于点G,交AE于点F.若AD=4cm,BG=1cm,则AB=_____cm.17.关于x的方程a2x+x=1的解是__.18.某地区为了增强市民的法治观念,随机抽取了一部分市民进行一次知识竞赛,将竞赛成绩(得分取整数)整理后分成五组并绘制成如图所示的频数直方图.请结合图中信息,解答下列问题:抽取了多少人参加竞赛?这一分数段的频数、频率分别是多少?这次竞赛成绩的中位数落在哪个分数段内?三、解答题(共78分)19.(8分)小明家准备给边长为6m的正方形客厅用黑色和白色两种瓷砖铺设,如图所示:①黑色瓷砖区域Ⅰ:位于四个角的边长相同的小正方形及宽度相等的回字型边框(阴影部分),②白色瓷砖区域Ⅱ:四个全等的长方形及客厅中心的正方形(空白部分).设四个角上的小正方形的边长为x(m).(1)当x=0.8时,若客厅中心的正方形瓷砖铺设的面积为16m2,求回字型黑色边框的宽度;(2)若客厅中心的正方形边长为4m,白色瓷砖区域Ⅱ的总面积为26m2,求x的值.20.(8分)如图,在直角坐标系中,A(0,4)、C(3,0),(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.21.(8分)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家快递公司每月的投递总件数的增长率相同,今年三月份与五月份完成投递的快递总件数分别为30万件和36.3万件,求该快递公司投递快递总件数的月平均增长率.22.(10分)阅读下面的材料:解方程,这是一个一元四次方程,根据该方程的特点,它的解法通常采用换元法降次:设,那么,于是原方程可变为,解得.当时,,∴;当时,,∴;原方程有四个根:.仿照上述换元法解下列方程:(1)(2).23.(10分)八年级(1)班同学为了解某小区家庭月均用水情况,随机调査了该小区部分家庭,并将调查数据整理成如下两幅不完整的统计图表:月均用水量x(t)频数(户)频率0<x≤560.125<x≤10m0.2410<x≤15160.3215<x≤20100.2020<x≤254n25<x≤3020.04请根据以上信息,解答以下问题:(1)直接写出频数分布表中的m、n的值并把频数直方图补充完整;(2)求出该班调查的家庭总户数是多少?(3)求该小区用水量不超过15的家庭的频率.24.(10分)如图所示的一块地,AD=8m,CD=6m,∠ADC=90°,AB=26m,BC=24m.求这块地的面积.25.(12分)如图,等边△ABC的边长6cm.①求高AD;②求△ABC的面积.26.如图,在平行四边形ABCD中,,延长DA于点E,使得,连接BE.求证:四边形AEBC是矩形;过点E作AB的垂线分别交AB,AC于点F,G,连接CE交AB于点O,连接OG,若,,求的面积.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】解:0.0005=5×10﹣4,故选:B.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、A【解题分析】
将x2-x看作一个整体,然后利用因式分解法解方程求出x2-x的值,再整体代入进行求解即可.【题目详解】∵(x2﹣x)2﹣4(x2﹣x)﹣12=0,∴(x2﹣x+2)(x2﹣x﹣6)=0,∴x2﹣x+2=0或x2﹣x﹣6=0,∴x2﹣x=﹣2或x2﹣x=6;当x2﹣x=﹣2时,x2﹣x+2=0,∵b2﹣4ac=1﹣4×1×2=﹣7<0,∴此方程无实数解;当x2﹣x=6时,x2﹣x+1=7,故选A.【题目点拨】本题考查了用因式分解法解一元二次方程,解本题的关键是把x2-x看成一个整体.3、C【解题分析】
由平行四边形的性质及角平分线的性质可得∠ADC的大小,进而可求解∠B的度数.【题目详解】解:在Rt△ADF中,∵∠DAF=50°,∴∠ADE=40°,又∵DE平分∠ADC,∴∠ADC=80°,∴∠B=∠ADC=80°.故选:C.【题目点拨】本题主要考查平行四边形的性质及角平分线的性质,应熟练掌握,并能做一些简单的计算问题.4、B【解题分析】
根据正方形和菱形的性质逐项分析可得解.【题目详解】根据正方形对角线的性质:平分、相等、垂直;菱形对角线的性质:平分、垂直,故选B.【题目点拨】考点:1.菱形的性质;2.正方形的性质.5、C【解题分析】
因式分解结果利用多项式乘以多项式法则计算,再利用多项式相等的条件求出b与c的值即可.【题目详解】解:根据题意得:x2+bx+c=(x+3)(x-1)=x2+2x-3,则b=2,c=﹣3,故选:C.【题目点拨】本题考查多项式与多项式相乘得到的结果相等,则要求等号两边同类项的系数要相同,熟练掌握多项式的乘法法则是解决本题的关键.6、C【解题分析】
根据一元二次方程的解的定义把代入方程得到关于m的方程,然后解关于m的方程即可.【题目详解】把x=m代入方程2x2﹣mx﹣4=0得2m2﹣m2﹣4=0,解得m=2或m=﹣2,故选C.【题目点拨】本题考查了一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.7、D【解题分析】
根据二次根式有意义的条件可得x﹣1≥0,求出不等式的解集,再在数轴上表示.【题目详解】由题意得:x﹣1≥0,解得:x≥1,在数轴上表示为:故选D.【题目点拨】本题主要考查了二次根式有意义的条件,以及在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.8、B【解题分析】
先看13位于哪两个相邻的整数的平方之间,再将不等式的两边同时开方即可得出答案.【题目详解】∵∴,故选B.【题目点拨】本题考查估算无理数的大小,平方根,本题的解题关键是掌握“夹逼法”估算无理数大小的方法.9、C【解题分析】
根据一元二次方程的定义即可求解.【题目详解】A.是一元一次方程,故错误;B.含有两个未知数,故错误;C.为一元二次方程,正确;D.含有分式,故错误,故选C.【题目点拨】此题主要考查一元二次方程的定义,解题的关键是熟知一元二次方程的特点.10、A【解题分析】试题分析:在一个平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,这样的图形叫做中心对称图形.根据定义可得:平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合.考点:轴对称图形与中心对称图形.11、D【解题分析】试题分析:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选D.考点:方差;加权平均数.12、A【解题分析】
根据正方形的判定方法逐项判断即可.【题目详解】对角线互相垂直且相等的四边形不一定是平行四边形,故A不能判定,由矩形的一条对角线平分一组对角可知该四边形也是菱形,故B能判定,由菱形的对角线相等可知该四边形也是矩形,故C能判定,由矩形的对角线互相垂直可知该四边形也是菱形,故D能判定,故选A.【题目点拨】本题主要考查正方形的判定,掌握正方形既是矩形也是菱形是解题的关键.二、填空题(每题4分,共24分)13、【解题分析】
根据题意得到的取值范围是,则通过解关于的方程求得的值,由的取值范围来求的取值范围.【题目详解】解:直线与轴的交点在、之间(包括、两点),,令,则,解得,则,解得.故答案是:.【题目点拨】本题考查了一次函数图象与系数的关系.根据一次函数解析式与一元一次方程的关系解得的值是解题的突破口.14、7,1【解题分析】
由题意知,,解得x=7,这组数据中7,1各出现两次,出现次数最多,故众数是7,1.15、【解题分析】
分式有意义的条件为,即可求得x的范围.【题目详解】根据题意得:,解得:.答案为:【题目点拨】本题考查了分式有意义的条件,熟练掌握分母不为0是解题的关键.16、1【解题分析】
根据题意先利用垂直平分线的性质得出AF=EF,∠AFG=∠EFD=90°,DA=DE,再证明△DEF≌△GAF(ASA),从而得DE=AG,然后利用一组对边平行且相等的四边形为平行四边形证明四边形DAGE为平行四边形,之后利用一组邻边相等的四边形为菱形证明DAGE为菱形,从而可得AG=AB,最后将已知线段长代入即可得出答案.【题目详解】解:∵AE的垂直平分线为DG∴AF=EF,∠AFG=∠EFD=90°,DA=DE∵四边形ABCD是平行四边形∴DC∥AB,AD∥BC,DC=AB,∴∠DEA=∠BAE∵AE平分∠BAD交CD于点E∴∠DAE=∠BAE∴在△DEF和△GAF中∴△DEF≌△GAF(ASA)∴DE=AG又∵DE∥AG∴四边形DAGE为平行四边形又∵DA=DE∴四边形DAGE为菱形.∴AG=AD∵AD=4cm∴AG=4cm∵BG=1cm∴AB=AG+BG=4+1=1(cm)故答案为:1.【题目点拨】本题考查平行四边形的判定与性质及菱形的判定与性质,熟练掌握相关性质及定理是解题的关键.17、.【解题分析】
方程合并后,将x系数化为1,即可求出解.【题目详解】解:方程合并得:(a2+1)x=1,解得:x=,故答案为:.18、(1)抽取了人参加比赛;(2)频数为,频数为0.25;(3)【解题分析】
(1)将每组的人数相加即可;(2)看频数直方图可知这一分数段的频数为12,用频数÷总人数即可得到频率;(3)直接通过频数直方图即可得解.【题目详解】解:(人),答:抽取了人参加比赛;频数为,频数为;这次竞赛成绩的中位数落在这个分数段内.【题目点拨】本题主要考查频数直方图,中位数等,解此题的关键在于熟练掌握其知识点,通过直方图得到有用的信息.三、解答题(共78分)19、(1)0.2;(2)【解题分析】
(1)根据题意可知客厅中心的正方形边长为4m,再结合图形即可求得回字型黑色边框的宽度;(2)根据白色瓷砖区域Ⅱ的面积由四个全等的长方形及客厅中心的正方形组成,可得关于x的方程,解方程后进行讨论即可得答案.【题目详解】(1)由已知可得客厅中心的正方形边长为4m,由图可得边框宽度为640.820.2m,即回字型黑色边框的宽度为0.2m;(2)由已知可列方程:4x62x1626,解得:x1=,x2=,当x=时,249>6,不符合实际,舍去,∴x=.【题目点拨】本题考查了一元二次方程的应用,弄清题意,找出等量关系列出方程是解题的关键.20、(1)①作图见解析;②作图见解析;(2)k=3【解题分析】试题分析:(1)、根据题意画出图形;(2)、将面积平分的直线经过平行四边形ABCD的对角线交点(1.5,2).试题解析:(1)(2)k=考点:(1)、平行四边形的性质;(2)、一次函数的性质.21、投递快递总件数的月平均增长率是10%.【解题分析】
设投递快递总件数的月平均增长率是x,依题意得:30(1+x)2=36.3,解方程可得.【题目详解】解:设投递快递总件数的月平均增长率是x,依题意,得:30(1+x)2=36.3则1+x=±1.1解得:x1=0.1=10%,x2=−2.1(舍),答:投递快递总件数的月平均增长率是10%.【题目点拨】考核知识点:一元二次方程的应用.理解增长率是关键.22、(1);(2),为原方程的解【解题分析】
(1)设,则由已知方程得到:,利用因式分解法求得该方程的解,然后解关于x的一元二次方程;(2)设,则由已知方程得到:,利用因式分解法求得该方程的解,然后进行检验即可.【题目详解】(1)令∴∴∴,∴舍,∴(2)令∴∴∴∴,∴,∴,经检验,,为原方程的解.【题目点拨】本题主要考查了换元法,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.23、(1)m=12,n=0.08;(2)50;(3)0.68.【解题分析】
(1)根据任意一组频数和频率即可得出总频数,即总频数为,即可得出m=12,进而求得n=0.08;补充完整的频数直方图见详解;(2)根据任意一组频数和频率即可得出总频数,即总频数为;(3)根据统计图表,该小区用水量不超过15的家庭的频率即为0.12+0.24+0.32=0.68.【题目详解】解:(1)∵频数为6,频率为0.12∴总频数为∴m=50-6-16-10-4-2=12∴n=4÷50=0.08数据求出后,即可将频数直方图补充完整,如下图所示:(2)根据(1)中即可得知,总频数为答:该班调查的家庭总户数是50户;(3)根据统计图表,该小区用水量不超过15的家庭的频率即为0.12+0.24+0.32=0.68.【题目点拨】此题主要考查统计图和频数分布表的性质,熟练掌握其特征,即可得解.24、96m2.【解题分析】
先连接AC,在Rt△ACD中,利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市绿化建设合同模板
- 无人驾驶廉政合同施工
- 科研实验摄影师聘用合同
- 商业步行街精装房施工合同
- 航空航天企业顾问合同模板
- 生态修复植树造林施工合同
- 隧道工程进度免责合同
- 蔬菜种植园大棚租赁协议
- 受灾学生救助合同范本
- 橡胶制品库存管理要点
- 物业服务前置方案
- 智慧树知到《艾滋病性与健康》见面课答案
- 新能源汽车技术职业生涯人物访谈报告
- 市政工程安全文明施工措施费提取和使用计划
- 表C.1.1 工程概况表(例)
- 银行消费者权益保护工作报告范文(通用3篇)
- 肿瘤管理中心规章制度范本
- 幼儿园故事课件:《下雪了》
- 高速公路景观及绿化设计指南
- 标准的指令性目标问题解决型案例
- 人教版小学六年级上册数学课本所有操作题
评论
0/150
提交评论