2024届江苏省苏州市市辖区八年级数学第二学期期末复习检测试题含解析_第1页
2024届江苏省苏州市市辖区八年级数学第二学期期末复习检测试题含解析_第2页
2024届江苏省苏州市市辖区八年级数学第二学期期末复习检测试题含解析_第3页
2024届江苏省苏州市市辖区八年级数学第二学期期末复习检测试题含解析_第4页
2024届江苏省苏州市市辖区八年级数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省苏州市市辖区八年级数学第二学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列命题是真命题的是()A.平行四边形的对角线相等B.经过旋转,对应线段平行且相等C.两组对角分别相等的四边形是平行四边形D.两边相等的两个直角三角形全等2.要使式子3-x有意义,则x的取值范围是()A.x>0 B.x≥﹣3 C.x≥3 D.x≤33.函数y=(2﹣a)x+b﹣1是正比例函数的条件是()A.a≠2

B.b=1

C.a≠2且b=1

D.a,b可取任意实数4.已知点在第二象限,则点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.为提高课堂效率,引导学生积极参与课堂教学,鼓励学生大胆发言,勇于发表自己的观点促进自主前提下的小组合作学习,张老师调查统计了一节课学生回答问题的次数(如图所示)这次调查统计的数据的众数和中位数分别是()A.众数2,中位数3 B.众数2,中位数2.5C.众数3,中位数2 D.众数4,中位数36.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为,则成绩最稳定的是(

)A.甲 B.乙 C.丙 D.丁7.已知函数y=2x+k-1的图象经过第一、三、四象限,则k的值可以是()A.3 B.2 C.1 D.08.下图入口处进入,最后到达的是()A.甲 B.乙 C.丙 D.丁9.根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根10.已知一粒米的质量是0.00021kg,这个数用科学记数法表示为()A.kg B.kg C.kg D.kg二、填空题(每小题3分,共24分)11.的化简结果为________12.已知菱形有一个锐角为60°,一条对角线长为4cm,则其面积为_______cm1.13.如图,在Rt△ABC中,BD平分∠ABC交AC于点D,过D作DE∥BC交AB于点E,若DE刚好平分∠ADB,且AE=a,则BC=_____.14.在新年晚会的投飞镖游戏环节中,名同学的投掷成绩(单位:环)分别是:,,,,,,,则这组数据的众数是________.15.如图,在矩形ABCD中,AD=10,AB=8,点P在AD上,且BP=BC,点M在线段BP上,点N在线段BC的延长线上,且MP=NC,连接MN交线段PC于点F,过点M作ME⊥PC于点E,则EF=_______.16.在四边形ABCD中,AB=AD,对角线AC平分∠BAD,AC=8,S四边形ABCD=16,那么对角线BD=______.17.已知,则的值为________.18.数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们次还原魔方所用时间的平均值与方差:甲乙丙丁(秒)要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择________同学.三、解答题(共66分)19.(10分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.20.(6分)已知,如图,点E为▱ABCD内任意一点,若▱ABCD的面积为6,连结点E与▱ABCD的四个顶点,求图中阴影部分的面积.21.(6分)如图,在平面直角坐标系中,两点分别是轴和轴正半轴上两个动点,以三点为顶点的矩形的面积为24,反比例函数(为常数且)的图象与矩形的两边分别交于点.(1)若且点的横坐标为3.①点的坐标为,点的坐标为(不需写过程,直接写出结果);②在轴上是否存在点,使的周长最小?若存在,请求出的周长最小值;若不存在,请说明理由.(2)连接,在点的运动过程中,的面积会发生变化吗?若变化,请说明理由,若不变,请用含的代数式表示出的面积.22.(8分)如图,直线l过点P1,2,且l与x,y轴的正半轴分別交于点A、B两点,O(1)当OA=OB时,求直线l的方程;(2)当点P1,2恰好为线段AB的中点时,求直线l23.(8分)某校八年级数学实践能力考试选择项目中,选择数据收集项目和数据分析项目的学生比较多。为了解学生数据收集和数据分析的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据:从选择数据收集和数据分析的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:数据收集109.59.510899.5971045.5107.99.510数据分析9.598.58.5109.510869.5109.598.59.56整理,描述数据:按如下分数段整理,描述这两组样本数据:10数据收集11365数据分析(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格.)分析数据:两组样本数据的平均数,中位数,众数如下表所示:项目平均数中位数众数数据收集8.759.510数据分析8.819.259.5得出结论:(1)如果全校有480人选择数据收集项目,达到优秀的人数约为________人;(2)初二年级的井航和凯舟看到上面数据后,井航说:数据分析项目整体水平较高.凯舟说:数据收集项目整体水平较高.你同意________的看法,理由为_______________________.(至少从两个不同的角度说明推断的合理性)24.(8分)如图,在ABCD中,点E,F分别在AD,BC边上,且BE∥DF.求证:(1)四边形BFDE是平行四边形;(2)AE=CF.25.(10分)李大伯响应国家保就业保民生政策合法摆摊,他预测某品牌新开发的小玩具能够畅销,就用3000元购进了一批小玩具,上市后很快脱销,他又用8000元购进第二批小玩具,所购数量是第一批购进数量的2倍,但每个进价贵了5元.(1)求李大伯第一次购进的小玩具有多少个?(2)如果这两批小玩具的售价相同,且全部售完后总利润率不低于20%,那么每个小玩具售价至少是多少元?26.(10分)解方程:(1).(2).

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

命题的真假,用证明的方法去判断,或者找到反例即可,【题目详解】A项平行四边形的对角线相等,这个不一定成立,反例只要不是正方形的菱形的对角线均不相等.B项经过旋转,对应线段平行且相等,这个不一定成立,反例旋转九十度,肯定不会平行,C项两组对角分别相等的四边形是平行四边形,这个是成立的,因为对角相等,那么可以得到同位角互补,同位角互补可以得到两组对边平行.D项两边相等的两个直角三角形全等,这个没有加对应的这几个字眼,那么就可以找到反例,一个直角三角形的两个直角边与另一个直角三角形的一直角边和斜边相等,那么这两个直角肯定不全等,所以选择C【题目点拨】本题主要考查基本定义和定理,比如四边形的基本性质,线段平行的关系,直角三角形全等的条件,把握这些定义和定理就没有问题了2、D【解题分析】

根据被开方数是非负数,可得答案.【题目详解】解:由题意,得3﹣x≥0,解得x≤3,故选:D.【题目点拨】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.3、C【解题分析】解:根据正比例函数的定义得:2﹣a≠0,b﹣1=0,∴a≠2,b=1.故选C.点睛:本题主要考查对正比例函数的定义的理解和掌握,能根据正比例函数的意义得出2﹣a≠0和b﹣1=0是解答此题的关键.4、D【解题分析】

依据A(a,﹣b)在第二象限,可得a<0,b<0,进而得到1﹣a>0,2b<0,即可得出点B(1﹣a,2b)在第四象限.【题目详解】∵A(a,﹣b)在第二象限,∴a<0,b<0,∴1﹣a>0,2b<0,∴点B(1﹣a,2b)在第四象限.故选D.【题目点拨】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5、A【解题分析】

根据中位数、众数的概念分别求得这组数据的中位数、众数即可.【题目详解】∵2出现了12次,出现的次数最多,∴众数是2,∵共有6+12+10+8+4=40个数,∴中位数是第20、21个数的平均数,∴中位数是(3+3)÷2=3,故选A.【题目点拨】本题考查了中位数、众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.6、D【解题分析】

因为=0.56,=0.60,=0.50,=0.45所以<<<,由此可得成绩最稳定的为丁.故选.点睛:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7、D【解题分析】

由一次函数图象经过的象限可得出k-1<0,解之可得出k的取值范围,再对照四个选项即可得出结论.【题目详解】∵函数y=2x+k-1的图象经过第一、三、四象限,∴k-1<0,解得:k<1.故选D.【题目点拨】本题考查了一次函数图象与系数的关系,牢记“k>0,b<0⇔y=kx+b的图象在一、三、四象限”是解题的关键.8、C【解题分析】

根据平行四边形的性质和对角线的定义对命题进行判断即可.【题目详解】等腰梯形也满足此条件,可知该命题不是真命题;根据平行四边形的判定方法,可知该命题是真命题;根据题意最后最后结果为丙.故选C.【题目点拨】本题考查命题和定理,解题关键在于熟练掌握平行四边形的性质和对角线的定义.9、A【解题分析】原方程变形为:x²-2x=0,∵△=(-2)²-4×1×0=4>0,∴原方程有两个不相等的实数根.故选A.10、A【解题分析】

科学记数法的形式是:,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数。本题小数点往右移动到2的后面,所以【题目详解】解:0.00021故选A.【题目点拨】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.二、填空题(每小题3分,共24分)11、【解题分析】

根据二次根式的乘法,化简二次根式即可.【题目详解】解:,故答案为:.【题目点拨】本题考查了二次根式的性质与化简,熟练掌握二次根式的乘法法则是解题关键.12、或【解题分析】

首先根据题意画出图形,由菱形有一个锐角为60°,可得△ABD是等边三角形,然后分别从较短对角线长为4cm与较长对角线长为4cm,去分析求解即可求得答案.【题目详解】解:∵四边形ABCD是菱形,∠BAD=60°,

∴AB=AD,AC⊥BD,AO=OC,BO=OD,

∴△ABD是等边三角形,①BD=4cm,则OB=1cm,∴AB=BD=4cm;

∴OA==(cm),

∴AC=1OA=4(cm),

∴S菱形ABCD=AC•BD=(cm1);

②AC=4cm.

∵四边形ABCD是菱形,

∴AO=1cm,∠BAO=30°,

∴AB=1OB,∴,即,

∴OB=(cm),BD=cm

∴S菱形ABCD=AC•BD=(cm1);

综上可得:其面积为cm1或cm1.

故答案为:或.【题目点拨】本题考查菱形的性质、等边三角形的判定与性质以及勾股定理.解题的关键是熟练掌握菱形的四边相等、对角线互相垂直且平分的性质.13、6a【解题分析】

根据角平分线的定义得到∠ABD=∠CBD,根据平行线的性质得到∠ADE=∠C,∠EDB=∠CBD,求得∠C=30°,根据含30°角的直角三角形的性质即可得到结论.【题目详解】∵BD平分∠ABC,∴∠ABD=∠CBD,∵DE∥BC,∴∠ADE=∠C,∠EDB=∠CBD,∵DE平分∠ADB,∴∠ADE=∠EDB,∴∠CBD=∠C,∴∠ABC=2∠C,∵∠A=90°,∴∠ABC+∠C=90°,∴∠C=30°,∴∠ADE=30°,∵AE=a,∴DE=2a,∵∠EDB=∠DBC,∠DBE=∠EBD,∴BE=DE=2a,∴AB=3a,∴BC=2AB=6a.故答案为:6a.【题目点拨】本题考查角平分线的定义、平行线的性质、及含30°角的直角三角形的性质,熟练掌握30°角所对的直角边等于斜边一半的性质是解题关键.14、1【解题分析】

直接利用众数的定义得出答案.【题目详解】∵7,1,1,4,1,8,8,中1出现的次数最多,∴这组数据的众数是:1.故答案为:1.【题目点拨】本题主要考查了众数的定义,解题的关键是掌握众数的定义:一组数据中,出现次数最多的数就叫这组数据的众数.15、【解题分析】

过点M作MH∥BC交CP于H,根据两直线平行,同位角相等可得∠MHP=∠BCP,两直线平行,内错角相等可得∠NCF=∠MHF,根据等边对等角可得∠BCP=∠BPC,然后求出∠BPC=∠MHP,根据等角对等边可得PM=MH,根据等腰三角形三线合一的性质可得PE=EH,利用“角边角”证明△NCF和△MHF全等,根据全等三角形对应边相等可得CF=FH,从而求出EF=CP,根据矩形的对边相等可得BC=AD=10,再利用勾股定理列式求出AP,然后求出PD,再次利用勾股定理列式计算即可求出CP,从而得解.【题目详解】如图,过点M作MH∥BC交CP于H,

则∠MHP=∠BCP,∠NCF=∠MHF,

∵BP=BC,

∴∠BCP=∠BPC,

∴∠BPC=∠MHP,

∴PM=MH,

∵PM=CN,

∴CN=MH,

∵ME⊥CP,

∴PE=EH,

在△NCF和△MHF中,

∴△NCF≌△MHF(AAS),

∴CF=FH,

∴EF=EH+FH=CP,

∵矩形ABCD中,AD=10,

∴BC=AD=10,

∴BP=BC=10,

在Rt△ABP中,AP===6,

∴PD=AD−AP=10−6=4,

在Rt△CPD中,CP===,

∴EF=CP=×=.

故答案为:.【题目点拨】本题考查等腰三角形的性质、勾股定理和全等三角形的判定(AAS)与性质,解题的关键是掌握等腰三角形的性质、勾股定理和全等三角形的判定(AAS)与性质.16、4【解题分析】

根据对角线互相垂直的四边形的面积等于对角线乘积的一半.【题目详解】解:如图,∵AC平分∠BAD,∴∠BAE=∠DAE,在△BAE和△DAE中AB=AD,∴△BAE≌△DAE,∴∠BEA=∠DEA,∵∠BEA+∠DEA=180º,∴∠BEA=∠DEA=90º,∴DB⊥AC,∴S四边形ABCD=12AC×∵AC=8,S四边形ABCD=16,∴BD=4.故答案为:4.【题目点拨】本题考查了对角线互相垂直的四边形的面积.17、1.【解题分析】

只有非负数才有平方根,可知两个被开方数都是非负数,即可求得x的值,进而得到y,从而求解.【题目详解】解:由题意得解得:x=1,

把x=1代入已知等式得:y=0,

所以,x+y=1.【题目点拨】函数自变量的范围一般从三个方面考虑:

(1)当函数表达式是整式时,自变量可取全体实数;

(2)当函数表达式是分式时,考虑分式的分母不能为0;

(3)当函数表达式是二次根式时,被开方数为非负数.18、丁【解题分析】

据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【题目详解】解:因为乙和丁的方差最小,但丁平均数最小,

所以丁还原魔方用时少又发挥稳定.

故应该选择丁同学.【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.三、解答题(共66分)19、甲建筑物的高度约为,乙建筑物的高度约为.【解题分析】分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.详解:如图,过点作,垂足为.则.由题意可知,,,,,.可得四边形为矩形.∴,.在中,,∴.在中,,∴.∴.∴.答:甲建筑物的高度约为,乙建筑物的高度约为.点睛:本题考查解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般.20、1【解题分析】

过E作MN⊥BC,交BC于M,交AD于N,得出△EBC的面积+△EAD的面积=AD•EN+BC•EM=BC•MN=平行四边形ABCD的面积,即可得出阴影部分的面积.【题目详解】解:过E作MN⊥BC,交BC于M,交AD于N,如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴EN⊥AD,∵S△AED=AD•EN,S△BCE=BC•EM,∴S△ADE+S△BCE=AD•EN+C•EM=BC•MN=平行四边形ABCD的面积=×6=1,∴阴影部分的面积=1.【题目点拨】本题主要考查了平行四边形的性质、阴影部分面积的计算;关键是掌握平行四边形的面积公式=底×高.21、(1)①点坐标为,点坐标为;②存在,周长;(2)不变,的面积为【解题分析】

(1)①求出点E的坐标,得出C点的纵坐标,根据面积为24即可求出C的坐标,得出F点横坐标即可求解;②作点E关于x轴的对称点G,连接GF,与x轴的交点为p,此时的周长最小(2)先算出三角形与三角形的面积,再求出三角形的面积即可.【题目详解】(1)①点坐标为,点坐标为;②作点E关于x轴的对称点G,连接GF,求与x轴的交点为p,此时的周长最小由①得EF=由对称可得EP=PH,由H(3,-4)F(6,2)可得HF=3△PEF=EP+PF+EF=FH+EF=(2)不变,求出三角形与三角形的面积为求出三角形的面积为求出三角形的面积为设E位(a,),则S△AEO=,同理可得S△AFB=,∵矩形的面积为24F(,),C(,)S△CEF=S=24--k=.【题目点拨】本题考查的是函数与矩形的综合运用,熟练掌握三角形和对称是解题的关键.22、(1)l方程为y=-x+3;l的方程为y=-2x+4.【解题分析】

(1)设OA=OB=t,可知At,0,B0,t,(2)过P作PC⊥x轴于点C,可得C1,0,可以推出PC为ΔAOB的中位线,可得OA=2OC=2,可得A2,0把A(2,0)和P1,2坐标代人y=kx+b【题目详解】(1)设OA=OB=t,则At,0,B0,t,设l方程为把B0,t代入方程得b=t,把At,0再把P1,2代入y=-x+t得t=3∴l方程为y=-x+3.(2)过P作PC⊥x轴于点C,则C的坐标1,0,∵P为AB中点∴PC为ΔAOB的中位线,∵C为OA中点,∴OA=2OC=2,∴A设l方程为y=kx+b,把A2,0和P1,2可得0=2k+b∴l的方程为y=-2x+4.【题目点拨】本题考查了用待定系数法函数解析式,解题的关键是找到函数图像上的点,将点代入得方程组,解方程即可得函数解析式.23、(1)1;(2)凯舟,数据收集项目的中位数较大,众数也较大,因此数据收集项目的整体水平较高.【解题分析】

(1)样本估计总体,样本中优秀人数占调查人数的,估计480人的得优秀;(2)可从中位数、众数的角度进行分析得出答案.【题目详解】解:整理的表格如下:(1)480×=1人,故答案为:1.(2)根据以下表格可知:根据整理后的数据,我同意凯舟的说法,数据收集项目的中位数较大,众数也较大,因此数据收集项目的整体水平较高.故答案为:凯舟;数据收集项目的中位数较大,众数也较大,因此数据收集项目的整体水平较高.【题目点拨】考查数据收集和整理能力,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论