版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省沈丘县2024届数学八下期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.计算的结果是()A. B. C. D.2.下列图形中,不是轴对称图形的是()A.矩形 B.菱形 C.平行四边形 D.正方形3.(2011•潼南县)目前,全球淡水资源日益减少,提倡全社会节约用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是() A、y=0.05x B、y=5x C、y=100x D、y=0.05x+1004.位参加歌唱比赛的同学的成绩各不相同,按成绩取前位进入决赛。如果小尹知道了自己的成绩后,要判断自己能否进入决赛,他还要知道这位同学成绩的()A.平均数 B.众数 C.方差 D.中位数5.如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A. B. C. D.6.点P(﹣3,m+1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B.C. D.7.在Rt△ABC中,D为斜边AB的中点,且BC=3,AC=4,则线段CD的长是()A.2 B.3 C.52 D.8.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E且AB=AE,延长AB与DE的延长线相交于点F,连接AC、CF.下列结论:①△ABC≌△EAD;②△ABE是等边三角形;③BF=AD;④S△BEF=S△ABC;⑤S△CEF=S△ABE;其中正确的有()A.2个 B.3个 C.4个 D.5个9.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90,则这五个数据的中位数是()A.90 B.95 C.100 D.10510.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都8环,甲射击成绩的方差是1.2,乙射击成绩的方差是1.8,射击成绩稳定的是()A.甲 B.乙 C.甲、乙一样 D.不能确定11.若点P(m,2)与点Q(3,n)关于原点对称,则m,n的值分别为()A.,2 B.3, C., D.3,212.国家实行一系列“三农”优惠政策后,农民收入大幅度增加.某乡所辖村庄去年的年人均收入(单位:元)情况如下表:年人均收入35003700380039004500村庄个数11331该乡去年各村庄年人均收入的中位数是()A.3700元 B.3800元 C.3850元 D.3900元二、填空题(每题4分,共24分)13.已知是分式方程的根,那么实数的值是__________.14.如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(-1,4).将△ABC沿y轴翻折到第一象限,则点C的对应点C′的坐标是_____.15.如图,正方形中,,点在边上,且.将沿对折至,延长交边于点,连接、.则下列结论:①:②;③:④.其中正确的有_(把你认为正确结论的序号都填上)16.如图所示的圆形工件,大圆的半径为,四个小圆的半径为,则图中阴影部分的面积是_____(结果保留).17.如图所示,数轴上点A所表示的数为____.18.若关于x的分式方程的解为非负数,则a的取值范围是_____.三、解答题(共78分)19.(8分)计算:.20.(8分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.21.(8分)类比等腰三角形的定义,我们定义:有三条边相等的凸四边形叫做“准等边四边形”.(1)已知:如图1,在“准等边四边形”ABCD中,BC≠AB,BD⊥CD,AB=3,BD=4,求BC的长;(2)在探究性质时,小明发现一个结论:对角线互相垂直的“准等边四边形”是菱形.请你判断此结论是否正确,若正确,请说明理由;若不正确,请举出反例;(3)如图2,在△ABC中,AB=AC=,∠BAC=90°.在AB的垂直平分线上是否存在点P,使得以A,B,C,P为顶点的四边形为“准等边四边形”.若存在,请求出该“准等边四边形”的面积;若不存在,请说明理由.22.(10分)如图,矩形中,对角线的垂直平分线与相交于点,与相交于点,连接,.求证:四边形是菱形.23.(10分)如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)判断△BEC的形状,并说明理由?(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;(3)求四边形EFPH的面积.24.(10分)如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.25.(12分)在的方格纸中,四边形的顶点都在格点上.(1)计算图中四边形的面积;(2)利用格点画线段,使点在格点上,且交于点,计算的长度.26.温度的变化是人们经常谈论的话题,请根据下图解决下列问题.(1)这一天的最高温度是多少?是在几时到达的?(2)这一天的温差是多少?从最低温度到最高温度经过多长时间?(3)在什么时间范围内温度在上升?在什么时间范围内温度在下降?
参考答案一、选择题(每题4分,共48分)1、A【解题分析】
根据二次根式性质求解.【题目详解】根据得=3故答案为:A【题目点拨】考核知识点:算术平方根性质.理解定义是关键.2、C【解题分析】
根据轴对称图形的定义即可判断.【题目详解】A.
矩形是轴对称图形,不符合题意;
B.
菱形是轴对称图形,不符合题意;
C.
平行四边形不是轴对称图形,符合题意;
D.
正方形是轴对称图形,不符合题意;
故选:C.【题目点拨】本题考查轴对称图形的定义,解题的关键是掌握轴对称图形的定义.3、:解:y=100×0.05x,即y=5x.故选B.【解题分析】:每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100×0.05毫升,则x分钟可滴100×0.05x毫升,据此即可求解.4、D【解题分析】
参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.【题目详解】由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少.故选D.【题目点拨】此题考查统计量的选择,解题关键在于掌握中位数的意义.5、B【解题分析】
根据S△ABE=S矩形ABCD=1=•AE•BF,先求出AE,再求出BF即可.【题目详解】如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=1=•AE•BF,∴BF=.故选:B.【题目点拨】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.6、C【解题分析】
由第二象限纵坐标大于零得出关于m的不等式,解之可得.【题目详解】解:由题意知m+1>0,解得m>﹣1,故选:C.【题目点拨】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7、C【解题分析】
根据勾股定理列式求出AB的长度,再根据直角三角形斜边上的中线等于斜边的一半解答.【题目详解】解:∵AC=4cm,BC=3,
∴AB=AC2+B∵D为斜边AB的中点,
∴CD=12AB=12×5=52.【题目点拨】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,熟记性质是解题的关键.8、B【解题分析】
根据平行四边形的性质可得AD//BC,AD=BC,根据平行线的性质可得∠BEA=∠EAD,根据等腰三角形的性质可得∠ABE=∠BEA,即可证明∠EAD=∠ABE,利用SAS可证明△ABC≌△EAD;可得①正确;由角平分线的定义可得∠BAE=∠EAD,即可证明∠ABE=∠BEA=∠BAE,可得AB=BE=AE,得出②正确;由S△AEC=S△DEC,S△ABE=S△CEF得出⑤正确;题中③和④不正确.综上即可得答案.【题目详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠BEA=∠EAD,∵AB=AE,∴∠ABE=∠BEA,∴∠EAD=∠ABE,在△ABC和△EAD中,,∴△ABC≌△EAD(SAS);故①正确;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠ABE=∠BEA=∠BAE,∴∠BAE=∠BEA,∴AB=BE=AE,∴△ABE是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;⑤正确.若AD=BF,则BF=BC,题中未限定这一条件,∴③不一定正确;如图,过点E作EH⊥AB于H,过点A作AG⊥BC于G,∵△ABE是等边三角形,∴AG=EH,若S△BEF=S△ABC,则BF=BC,题中未限定这一条件,∴④不一定正确;综上所述:正确的有①②⑤.故选:B.【题目点拨】本题考查平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质,熟练掌握等底、等高的三角形面积相等的性质是解题关键.9、B【解题分析】试题分析:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.将数据按照从小到大的顺序排列为:90,90,1,105,110,根据中位数的概念可得中位数为1.故答案选B.考点:中位数.10、A【解题分析】
根据方差的概念判断即可.【题目详解】在平均数相同的情况下,方差小的更稳定,故选A.【题目点拨】本题考查方差的意义,关键在于牢记方差的概念.11、C【解题分析】
根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【题目详解】点P(m,2)与点Q(3,n)关于原点对称,得m=-3,n=-2,故选:C.【题目点拨】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.12、B【解题分析】
找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.【题目详解】根据图表可知题目中数据共有9个,
故中位数是按从小到大排列后第59个数的平均数作为中位数,
故这组数据的中位数是3800元.故选B.【题目点拨】主要运用了求中位数的方法,一些学生往往对这个图表分析的不准确,没有考虑到共有10个数据而不是5个而错解.二、填空题(每题4分,共24分)13、1【解题分析】
将代入到方程中即可求出m的值.【题目详解】解:将代入,得解得:故答案为:1.【题目点拨】此题考查的是根据分式方程的根求分式方程中的参数,掌握分式方程根的定义是解决此题的关键.14、(3,1)【解题分析】
关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【题目详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【题目点拨】本题属于基础题,只需学生熟练掌握关于y轴对称的点的坐标的特征,即可完成.15、①②③④【解题分析】
根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;由①和翻折的性质得出△ABG≌△AFG,△ADE≌△AFE,即可得出;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF.【题目详解】解:①正确,∵四边形ABCD是正方形,将△ADE沿AE对折至△AFE,∴AB=AD=AF,在△ABG与△AFG中,;△ABG≌△AFG(SAS);②正确,∵由①得△ABG≌△AFG,又∵折叠的性质,△ADE≌△AFE,∴∠BAG=∠FAG,∠DAE=∠EAF,∴∠EAG=∠FAG+∠EAF=90°×=45°;③正确,∵EF=DE=CD=2,设BG=FG=x,则CG=6-x,在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,解得x=3,∴BG=3=6-3=GC;④正确,∵CG=BG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF,又∠AGB=∠AGF,∠AGB+∠AGF=180°-∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;【题目点拨】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,此题综合性较强,难度较大,解题的关键是注意数形结合思想应用.16、3080π.【解题分析】
用大圆的面积减去4个小圆的面积即可得到剩余部分的面积,然后把R和r的值代入计算出对应的代数式的值.【题目详解】依题意得:65.41π-17.31π×4=4177.16π-1197.16π=3080π(mm1).答:剩余部分面积为3080πmm1.故答案为:3080π.【题目点拨】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.也考查了求代数式的值.17、【解题分析】
首先计算出直角三角形斜边的长,然后再确定点A所表示的数.【题目详解】∵,∴点A所表示的数1.故答案为:.【题目点拨】本题考查了实数与数轴,关键是利用勾股定理计算出直角三角形斜边长.18、且【解题分析】分式方程去分母得:2(2x-a)=x-2,去括号移项合并得:3x=2a-2,解得:,∵分式方程的解为非负数,∴且,解得:a≥1且a≠4.三、解答题(共78分)19、19【解题分析】分析:先化简括号里面的,再合并,最后计算相乘,即可得到结果.详解:原式===.点睛:本题主要考查二次根式的化简,二次根式的乘法法则,合并同类二次根式,关键在于熟练运用相关的运算法则,正确认真的进行计算.20、(1)见解析;(2)∠BDF=18°.【解题分析】
(1)先证明四边形ABCD是平行四边形,求出∠ABC=90°,然后根据矩形的判定定理,即可得到结论;(2)求出∠FDC的度数,根据三角形的内角和,求出∠DCO,然后得到OD=OC,得到∠CDO,即可求出∠BDF的度数.【题目详解】(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCO=54°,∴∠BDF=∠ODC﹣∠FDC=18°.【题目点拨】本题考查了平行四边形的判定和性质,矩形的判定和性质,能灵活运用定理进行推理是解题的关键.注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.21、(1)5;(2)正确,证明详见解析;(3)存在,有四种情况,面积分别是:,,,【解题分析】
(1)根据勾股定理计算BC的长度,(2)根据对角线互相垂直平分的四边形是菱形判断,(3)有四种情况,作辅助线,将四边形分成两个三角形和一个四边形或两个三角形,相加可得结论.【题目详解】(1)∵BD⊥CD∴∠BDC=90°,BC>CD∵在“准等边四边形”ABCD中,BC≠AB,∴AB=AD=CD=3,∵BD=4,∴BC=,(2)正确.如图所示:∵AB=AD∴ΔABD是等腰三角形.∵AC⊥BD.∴AC垂直平分BD.∴BC=CD∴CD=AB=AD=BC∴四边形ABCD是菱形.(3)存在四种情况,如图2,四边形ABPC是“准等边四边形”,过C作于F,则,∵EP是AB的垂直平分线,∴,∴四边形AEFC是矩形,在中,,∴,∵∴∴如图4,四边形ABPC是“准等边四边形”,
∵,∴是等边三角形,∴;如图5,四边形ABPC是“准等边四边形”,∵,PE是AB的垂直平分线,∴E是AB的中点,∴,∴∴如图6,四边形ABPC是“准等边四边形”,过P作于F,连接AP,
∵,∴,∴【题目点拨】本题考查了四边形综合题,矩形和菱形的判定和性质,“准等边四边形”的定义等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形和矩形解题,学会用分类讨论的思想解决问题,难度较大,属于中考压轴题.22、见解析【解题分析】
先证明四边形AMCN为平行四边形,再根据对角线互相垂直的平行四边形是菱形即可证得结论.【题目详解】是矩形,则,,而是的垂直平分线,则,,而,,,四边形为平行四边形,又,四边形是菱形.【题目点拨】本题考查了矩形的性质,平行四边形的判定,菱形的判定等,正确把握相关的性质定理与判定定理是解题的关键.23、(1)△BEC是直角三角形,理由见解析(2)四边形EFPH为矩形,理由见解析(3)【解题分析】(1)△BEC是直角三角形,理由略(2)四边形EFPH为矩形证明:在矩形ABCD中,∠ABC=∠BCD=900∴PA=,PD=2∵AD=BC=5∴AP2+PD2=25=AD2∴∠APD=900(3分)同理∠BEC=900∵DE=BP∴四边形BPDE为平行四边形∴BE∥PD(4分)∴∠EHP=∠APD=900,又∵∠BEC=900∴四边形EFPH为矩形(5分)(3)在RT△PCD中∠FfPD∴PD·CF=PC·CD∴CF==∴EF=CE-CF=-=(7分)∵PF==∴S四边形EFPH=EF·PF=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度北京生物医药研发合同
- 2024年度北京市小汽车租赁行业培训合同
- 催化转化器市场发展现状调查及供需格局分析预测报告
- 清洁梳市场需求与消费特点分析
- 2024年度广告制作合同:某品牌广告制作协议
- 04版计算机软件开发与授权合同
- 2024年度合同服务内容扩展:供应链管理合同标的的物流方案与风险控制
- 2024年度农产品批量供应与销售合同
- 退热剂市场发展预测和趋势分析
- 电磁阀市场需求与消费特点分析
- 海洋生物资源开发与利用
- 自来水公司中层竞聘题库
- 学前教育大学生职业生涯规划
- 嵌入式职业规划
- 【曾国藩家庭教育思想对现代家庭教育的启示6900字(论文)】
- 《红领巾胸前飘》课件
- 教师的社会需求分析报告
- 修理工安全培训课件
- 睾丸鞘膜积液的护理查房
- 《病历书写基本规范》课件
- 《石墨简单介绍》课件
评论
0/150
提交评论