梅州市重点中学2024届数学八年级第二学期期末联考试题含解析_第1页
梅州市重点中学2024届数学八年级第二学期期末联考试题含解析_第2页
梅州市重点中学2024届数学八年级第二学期期末联考试题含解析_第3页
梅州市重点中学2024届数学八年级第二学期期末联考试题含解析_第4页
梅州市重点中学2024届数学八年级第二学期期末联考试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

梅州市重点中学2024届数学八年级第二学期期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,使点D落在E处,CE交AB于点O,若BO=3m,则AC的长为()A.6cm B.8cm C.5cm D.4cm2.下列根式中不是最简二次根式的是()A. B. C. D.3.如图,在中,点、、分别在边、、上,且,.下列说法中不正确的是()A.四边形是平行四边形B.如果,那么四边形是矩形.C.如果平分,那么四边形是正方形.D.如果且,那么四边形是菱形.4.调查50名学生的年龄,列频数分布表时,这些学生的年龄落在5个小组中,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是()A.20 B.30 C.0.4 D.0.65.将一个n边形变成(n+1)边形,内角和将()A.减少180° B.增加90°C.增加180° D.增加360°6.下列命题是假命题的是()A.菱形的对角线互相垂直平分B.有一斜边与一直角边对应相等的两直角三角形全等C.有一组邻边相等且垂直的平行四边形是正方形D.对角线相等的四边形是矩形7.关于的方程有实数根,则满足()A. B.且 C.且 D.8.等边△ABC的边长为6,点O是三边垂直平分线的交点,∠FOG=120°,∠FOG的两边OF,OG分别交AB,BC与点D,E,∠FOG绕点O顺时针旋转时,下列四个结论正确的是()①OD=OE;②;③;④△BDE的周长最小值为9.A.1个 B.2个 C.3个 D.4个9.某校八年级学生去距学校10km的科技馆参观,一部分学生骑自行车,过了30min,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车学生速度的4倍,设骑自行车学生的速度为xkm/h,则下列方程正确的是()A. B. C. D.10.下列二次根式,最简二次根式是()A.8 B.12 C.5 D.11.把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+212.“分数”与“分式”有许多共同点,我们在学习“分式”时,常常对比“分数”的相关知识进行学习,这体现的数学思想方法是()A.分类 B.类比 C.方程 D.数形结合二、填空题(每题4分,共24分)13.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积为______。14.如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是____________cm.15.若方程x2﹣3x﹣1=0的两根为x1、x2,则的值为_____.16.一组数据2,3,1,3,5,4,这组数据的众数是___________.17.若a<0,则化简的结果为__________.18.在湖的两侧有A,B两个观湖亭,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为50米,则A,B之间的距离应为______米.三、解答题(共78分)19.(8分)如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,点E为BC的中点,求DE的长.20.(8分)(12分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元?(用列方程的方法解答)(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格240021.(8分)某学校八年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置—、二、三等奖和进步奖共四个奖项,赛后将八年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请报据图中的信息,解答下列问题:(1)八年级(1)班共有名学生;(2)将条形图补充完整;在扇形统计图中,“二等奖”对应的扇形的圆心角度数;(3)如果该八年级共有800名学生,请估计荣获一、二、三等奖的学生共有多少名.22.(10分)已知一次函数y=图象过点A(2,4),B(0,3)、题目中的矩形部分是一段因墨水污染而无法辨认的文字.(1)根据信息,求题中的一次函数的解析式.(2)根据关系式画出这个函数图象.23.(10分)已知,在平行四边形ABCD中,E为AD上一点,且AB=AE,连接BE交AC于点H,过点A作AF⊥BC于F,交BE于点G.(1)若∠D=50°,求∠EBC的度数;(2)若AC⊥CD,过点G作GM∥BC交AC于点M,求证:AH=MC.24.(10分)如图,已知一次函数的图象与反比例函数第一象限内的图象相交于点,与轴相交于点.(1)求和的值;(2)观察反比例函数的图象,当时,请直接写出的取值范围;(3)如图,以为边作菱形,使点在轴正半轴上,点在第一象限,双曲线交于点,连接、,求.25.(12分)王老师计划用36元购买若干袋洗衣液,恰遇超市降价促销,每袋洗衣液降价3元,因而王老师只用24元便可以购买到相同袋数的洗衣液.问这种洗衣液每袋原价是多少元?26.如图,在△ABC中,∠B=30°,边AB的垂直平分线分别交AB和BC于点D,E,且AE平分∠BAC.(1)求∠C的度数;(2)若CE=1,求AB的长.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】

根据折叠前后角相等可证AO=CO,在直角三角形CBO中,运用勾股定理求得CO,再根据线段的和差关系和勾股定理求解即可.【题目详解】根据折叠前后角相等可知∠DCA=∠ACO,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=4cm,∴∠DCA=∠CAO,∴∠ACO=∠CAO,∴AO=CO,在直角三角形BCO中,CO==5cm,∴AB=CD=AO+BO=3+5=8cm,在Rt△ABC中,AC=cm,故选:D.【题目点拨】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.2、C【解题分析】

最简二次根式必须满足两个条件:被开方数不含分母,被开方数中不含能开的尽方的因数或因式.=2,故不是最简二次根式.故选C3、C【解题分析】

根据特殊的平行四边形的判定定理来作答.【题目详解】解:由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形;又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形.故A、B正确;如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,∴∠FAD=∠ADF,∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形,而不一定是矩形.故C错误;如果AD⊥BC且AB=AC,那么AD平分∠BAC,同上可得四边形AEDF是菱形.故D正确.故选:C.【题目点拨】本题考查平行四边形、矩形及菱形的判定,具体选择哪种方法需要根据已知条件来确定.4、A【解题分析】

根据频数的定义:频数表是数理统计中由于所观测的数据较多,为简化计算,将这些数据按等间隔分组,然后按选举唱票法数出落在每个组内观测值的个数,称为(组)频数。一共5个频数,已知总频数为50,四个频数已知,即可求出其余的一个频数.【题目详解】一共5个频数,已知总频数为50,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是50-2-8-15-5=20,故答案为A.【题目点拨】此题主要考查对频数定义的理解,熟练掌握即可得解.5、C【解题分析】

利用多边形的内角和公式即可求出答案.【题目详解】解:n边形的内角和是(n﹣2)•180°,n+1边形的内角和是(n﹣1)•180°,因而(n+1)边形的内角和比n边形的内角和大(n﹣1)•180°﹣(n﹣2)•180=180°.故选C.6、D【解题分析】试题分析:根据菱形的性质对A进行判断;根据直角三角形的判定方法对B进行判断;根据正方形的判定方法对C进行判断;根据矩形的判定方法对D进行判断.解:A、菱形的对角线互相垂直平分,所以A选项为真命题;B、有一斜边与一直角边对应相等的两直角三角形全等,所以B选项为真命题;C、有一组邻边相等且垂直的平行四边形是正方形,所以C选项为真命题;D、对角线相等的平行四边形是矩形,所以D选项为假命题.故选D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7、A【解题分析】

分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【题目详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.8、B【解题分析】

连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠0CB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,所以BD=CE,OD=OE,则可对①进行判断;利用得到四边形ODBE的面积,则可对进行③判断;作OH⊥DE,如图,则DH=EH,计算出=,利用面积随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断;由于△BDE的周长=BC+DE=4+DE=4+OE,根据垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.【题目详解】解:连接OB、OC,如图,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点0是△ABC的中心,∴OB=OC,OB、OC分别平分∠ABC和∠ACB,∴∠ABO=∠0BC=∠OCB=30°∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE,在△BOD和△COE中∴△BOD2≌△COE,∴BD=CE,OD=OE,所以①正确;∴,∴四边形ODBE的面积,所以③错误;作OH⊥DE,如图,则DH=EH,∵∠DOE=120°,∴∠ODE=∠OEH=30°,即S△ODE随OE的变化而变化,而四边形ODBE的面积为定值,所以②错误;∵BD=CE,∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=6+OE,当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=,.△BDE周长的最小值=6+3=9,所以④正确.故选:B.【题目点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和全等三角形的判定与性质.9、A【解题分析】汽车的速度是4xkm/h,骑自行车所需要的时间=乘汽车的时间+30min,故选A.10、C【解题分析】

检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【题目详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C.【题目点拨】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.11、B【解题分析】试题分析:根据题意,将直线y=2x﹣1向左平移1个单位后得到的直线解析式为:y=2(x+1)﹣1,即y=2x+1,故选B.考点:一次函数图象与几何变换12、B【解题分析】

根据分式和分数的基本性质,成立的条件等相关知识,分析求解.【题目详解】“分数”与“分式”有许多共同点,我们在学习“分式”时,常常对比“分数”的相关知识进行学习,比如分数的基本性质,分数成立的条件等,这体现的数学思想方法是类比故选:B【题目点拨】本题的解题关键是掌握分数和分式的基本性质和概念.二、填空题(每题4分,共24分)13、36【解题分析】

连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.【题目详解】连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD=13=169,CD+AC=12+5=144+25=169,∴CD+AC=AD,∴△ACD为直角三角形,∠ACD=90°,则S四边形ABCD=S△ABC+S△ACD=AB⋅BC+AC⋅CD=×3×4+×5×12=36,故四边形ABCD的面积是36【题目点拨】此题考查勾股定理的逆定理,勾股定理,解题关键在于作辅助线14、7.2【解题分析】试题分析:根据勾股定理的逆定理求出∠A=90°,根据矩形的判定得出四边形ADME是矩形,根据矩形的性质得出DE=AM,求出AM的最小值即可.解:∵在△ABC中,AB=6cm,AC=1cm,BC=10cm,∴BC2=AB2+AC2,∴∠A=90°,∵MD⊥AB,ME⊥AC,∴∠A=∠ADM=∠AEM=90°,∴四边形ADME是矩形,∴DE=AM,当AM⊥BC时,AM的长最短,根据三角形的面积公式得:AB×AC=BC×AM,∴6×1=10AM,AM=4.1(cm),即DE的最小值是4.1cm.故答案为4.1.考点:矩形的判定与性质;垂线段最短;勾股定理的逆定理.15、-3【解题分析】

解:因为的两根为x1,x2,所以=故答案为:-316、1【解题分析】

根据众数的概念即可得到结果.【题目详解】解:在这组数据中1出现了2次,出现的次数最多,则这组数据的众数是1;

故答案为:1.【题目点拨】此题考查了众数的定义;熟记众数的定义是解决问题的关键.17、-a【解题分析】

直接利用二次根式的化简的知识求解即可求得答案.【题目详解】∵a<0,∴=|a|=﹣a.故答案为﹣a.【题目点拨】本题考查了二次根式的化简.注意=|a|.18、1【解题分析】

根据三角形中位线的性质定理,解答即可.【题目详解】∵点D、E分别为AC、BC的中点,∴AB=2DE=1(米),故答案为:1.【题目点拨】本题主要考查三角形中位线的性质定理,掌握三角形的中位线平行于第三边,且等于第三边长的一半,是解题的关键.三、解答题(共78分)19、2.【解题分析】试题分析:延长BD与AC相交于点F,根据等腰三角形的性质可得BD=DF,再利用三角形的中位线平行于第三边并且等于第三边的一半可得DE=CF,然后求解即可.试题解析:如图,延长BD交AC于点F,∵AD平分∠BAC,∴∠BAD=∠CAD.∵BD⊥AD,∴∠ADB=∠ADF,又∵AD=AD,∴△ADB≌△ADF(ASA).∴AF=AB=6,BD=FD.∵AC=10,∴CF=AC-AF=10-6=4.∵E为BC的中点,∴DE是△BCF的中位线.∴DE=CF=×4=2.20、(1)2000;(2)A型车17辆,B型车33辆【解题分析】试题分析:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,先求出m的范围,构建一次函数,利用函数性质解决问题.试题解析:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m解之得m≥,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.考点:(1)一次函数的应用;(2)分式方程21、(1)50;(2)见解析;57.6°;(3)368.【解题分析】

(1)根据“不得奖”人数及其百分比可得总人数;(2)总人数乘以一等奖所占百分比可得其人数,补全图形,根据各项目百分比之和等于1求得二等奖所占百分比,再乘以360°即可得;(3)用总人数乘以荣获一、二、三等奖的学生占总人数的百分比即可.【题目详解】解:(1)八年级(1)班共有=50(2)获一等奖人数为:50×10%=5(人),补全图形如下:∵获“二等奖”人数所长百分比为1−50%−10%−20%−4%=16%,“二等奖”对应的扇形的圆心角度数是×16%=57.6,(3)(名)【题目点拨】此题考查扇形统计图,条形统计图,用样本估计总体,解题关键在于看懂图中数据22、(1)y=x+1;(2)见解析.【解题分析】

(1)设一次函数的解析式是y=kx+b,把A(0,1)、B(2,4)代入得出方程组,求出方程组的解即可;

(2)过A、B作直线即可;【题目详解】(1)解:设一次函数的解析式是y=kx+b,

∵把A(0,1)、B(2,4)代入得:解得:k=0.5,b=1,

∴一次函数的解析式是y=x+1.(2)解:如图【题目点拨】本题考查用待定系数法求一次函数的解析式,一次函数的图象画法等知识的应用,解题关键是熟练掌握一次函数的性质.23、(1)∠EBC=25°;(2)见解析;【解题分析】

(1)根据等边对等角以及平行线的性质,即可得到∠1=∠2=∠ABC,再根据平行四边形ABCD中,∠D=50°=∠ABC,可得出∠EBC的度数;(2)过M作MN⊥BC于N,过G作GP⊥AB于P,则∠CNM=∠APG=90°,先根据AAS判定△BPG≌△BFG,得到PG=GF,根据矩形GFNM中GF=MN,即可得出PG=NM,进而判定△PAG≌△NCM(AAS),可得AG=CM,再根据等角对等边得到AH=AG,即可得到结论.【题目详解】(1)∵AB=AE,∴∠1=∠3,∵AE∥BC,∴∠2=∠3,∴∠1=∠2=∠ABC,又∵平行四边形ABCD中,∠D=50°,∴∠ABC=50°,∴∠EBC=25°;(2)证明:如图,过M作MN⊥BC于N,过G作GP⊥AB于P,则∠CNM=∠APG=90°,由(1)可得,∠1=∠2,∵AF⊥BC,∴∠BPG=∠BFG=90°,在△BPG和△BFG中,,∴△BPG≌△BFG(AAS),∴PG=GF,又∵矩形GFNM中,GF=MN,∴PG=NM,∵AC⊥CD,CD∥AB,∴∠BAC=90°=∠AFB,即∠PAG+∠ABF=∠NCM+∠ABC=90°,∴∠PAG=∠NCM,在△PAG和△NCM中,,∴△PAG≌△NCM(AAS),∴AG=CM,∵∠1=∠2,∠BAH=∠BFG,∴∠AHG=∠FGB=∠AGH,∴AG=AH,∴AH=MC.【题目点拨】此题考查全等三角形的判定与性质,平行四边形的性质,解题关键在于掌握判定定理和作辅助线.24、(1)n=3,k=12;(2)或;(3)S△ABE=.【解题分析】

(1)把A点坐标代入一次函数解析式可求得n,则可求得A点坐标,代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论