版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省扬州市教院2024届数学八下期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.某校八班名同学在分钟投篮测试中的成绩如下:,,,,,(单位:个),则这组数据的中位数、众数分别是()A., B., C., D.,2.某公司全体职工的月工资如下:月工资(元)18000120008000600040002500200015001200人数1(总经理)2(副总经理)34102022126该公司月工资数据的众数为2000,中位数为2250,平均数为3115,极差为16800,公司的普通员工最关注的数据是()A.中位数和众数 B.平均数和众数C.平均数和中位数 D.平均数和极差3.如图,在平面直角坐示系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的横坐标分別为1,2,反比例函数的图像经过A,B两点,则菱形ABCD的边长为()A.1 B. C.2 D.4.要使代数式有意义,实数的取值范围是()A. B. C. D.5.若二次根式有意义,则x的取值范围是()A.x≥-5 B.x>-5 C.x≥5 D.x>56.某班名男生参加中考体育模拟测试,跑步项目成绩如下表:成绩(分)人数则该班男生成绩的中位数是()A. B. C. D.7.若关于的一元二次方程通过配方法可以化成的形式,则的值不可能是A.3 B.6 C.9 D.108.小颖八年级第一学期的数学成绩分别为:平时90分,期中86分,期末95分若按下图所显示的权重要求计算,则小颖该学期总评成绩为()A.88 B. C. D.939.如图,点P是等边△ABC的边上的一个做匀速运动的动点,其由点A开始沿AB边运动到B再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,则S与t的大致图象是()A. B. C. D.10.如图,沿直线边BC所在的直线向右平移得到,下列结论中不一定正确的是A. B.C. D.二、填空题(每小题3分,共24分)11.下列4个分式:①;②;③;④,中最简分式有_____个.12.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的有_____(只填序号).13.在实数范围内分解因式:x2﹣3=_____.14.如图,在中,,在同一平面内,将绕点旋转到的位置,使得,则的度数等于___________.15.如图,在平面直角坐标系中,已知点、、的坐标分别为,,.若点从点出发,沿轴正方向以每秒1个单位长度的速度向点移动,连接并延长到点,使,将线段绕点顺时针旋转得到线段,连接.若点在移动的过程中,使成为直角三角形,则点的坐标是__________.16.如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为_____.17.若,,则代数式__________.18.的平方根是____.三、解答题(共66分)19.(10分)某校围绕“扫黑除恶”专项斗争进行了普法宣传,然后在各班级分别随机抽取了5名同学进行了测试.规定:95分或以上为优秀。其中八(1)班和八(2)班成绩如下:八(1)班:100,100,90,90,90;八(2)班:95,95,95,95,90;(1)八(1)班和八(2)班的优秀率分别是多少?(2)通过计算说明:哪个班成绩相对整齐?(3)若该校共有1000名学生,则通过这两个班级的成绩分析:该校大约有多少学生达到优秀?20.(6分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB∶∠ODC=4∶3,求∠ADO的度数.21.(6分)李刚家去年养殖的“丰收一号”多宝鱼喜获丰收,上市20天全部售完,李刚对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图所示.(1)观察图象,直接写出日销售量的最大值;(2)求李刚家多宝鱼的日销售量y与上市时间x的函数解析式.22.(8分)如图,在长方形ABCD中,AB=6,BC=8,点O在对角线AC上,且OA=OB=OC,点P是边CD上的一个动点,连接OP,过点O作OQ⊥OP,交BC于点Q.(1)求OB的长度;(2)设DP=x,CQ=y,求y与x的函数表达式(不要求写自变量的取值范围);(3)若OCQ是等腰三角形,求CQ的长度.23.(8分)某市举行“行动起来,对抗雾霾”为主题的植树活动,某街道积极响应,决定对该街道进行绿化改造,共购进甲、乙两种树共50棵,已知甲树每棵800元,乙树每棵1200元.(1)若购买两种树的总金额为56000元,求甲、乙两种树各购买了多少棵?(2)若购买甲树的金额不少于购买乙树的金额,至少应购买甲树多少棵?24.(8分)4月23日是世界读书日,总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读,该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:):3060815044110130146801006080120140758110308192课外阅读时间等级人数38平均数中位数众数8081四、得出结论:①表格中的数据:,,;②用样本中的统计量估计该校学生每周用于课外阅读时间的等级为;③如果该校现有学生400人,估计等级为“”的学生有人;④假设平均阅读一本课外书的时间为320分钟,请你用样本平均数估计该校学生每人一年(按52周计算)平均阅读本课外书.25.(10分)列方程解题:据专家预测今年受厄尔尼诺现象影响,我国大部分地区可能遇到洪涝灾害.进入防汛期前,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:“你们是用9天完成4800米长的大坝加固任务的”?“我们加固600米后采用新的加固模式,这样每天加固长度是原来的2倍”,通过这段对话请你求出该地驻军原来每天加固的米数.26.(10分)如图,在四边形中,点分别是对角线上任意两点,且满足,连接,若.求证:(1)(2)四边形是平行四边形.
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】
根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【题目详解】解:把数据从小到大的顺序排列为:2,1,1,8,10;在这一组数据中1是出现次数最多的,故众数是1.处于中间位置的数是1,那么由中位数的定义可知,这组数据的中位数是1.故选:D.【题目点拨】此题考查中位数与众数的意义,掌握基本概念是解决问题的关键2、A【解题分析】
根据中位数、众数、平均数及极差的意义分别判断后即可得到正确的选项.【题目详解】∵数据的极差为16800,较大,∴平均数不能反映数据的集中趋势,∴普通员工最关注的数据是中位数及众数,故选A.【题目点拨】本题考查了统计量的选择的知识,解题的关键是了解有关统计量的意义,难度不大.3、B【解题分析】
过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为1,2,可得出纵坐标,即可求得AE,BE,再根据勾股定理得出答案.【题目详解】解:过点A作x轴的垂线,与CB的延长线交于点E,
∵A,B两点在反比例函数的图象上且横坐标分别为1,2,
∴A,B纵坐标分别为2,1,
∴AE=1,BE=1,
∴AB==.故选B.【题目点拨】本题考查菱形的性质以及反比例函数图象上点的坐标特征,熟练掌握菱形的性质以及反比例函数图象上点的坐标特征是解题的关键.4、B【解题分析】
根据二次根式的双重非负性即可求得.【题目详解】代数式有意义,二次根号下被开方数≥0,故∴故选B.【题目点拨】本题考查了二次根式有意义的条件,难度低,属于基础题,熟练掌握二次根式的双重非负性是解题关键.5、C【解题分析】【分析】根据二次根式有意义的条件:被开方数为非负数进行求解即可得.【题目详解】由题意得:x-5≥0,解得:x≥5,故选C.【题目点拨】本题考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键.6、C【解题分析】
将一组数据按照大小顺序排列,位于最中间的那个数或两个数的平均数就是该组数据的中位数,据此结合题意进一步加以计算即可.【题目详解】∵该班男生一共有18名,∴中位数为按照大小顺序排序后第9与第10名的成绩的平均数,∴该班男生成绩的中位数为:,故选:C.【题目点拨】本题主要考查了中位数的定义,熟练掌握相关概念是解题关键.7、D【解题分析】
方程配方得到结果,即可作出判断.【题目详解】解:方程,变形得:,配方得:,即,,即,则的值不可能是10,故选:.【题目点拨】此题考查了解一元二次方程配方法,熟练掌握完全平方公式是解本题的关键.8、B【解题分析】
根据加权平均数的计算公式即可得.【题目详解】由题意得:小颖该学期总评成绩为(分)故选:B.【题目点拨】本题考查了加权平均数的计算公式,熟记公式是解题关键.9、C【解题分析】
设等边三角形的高为h,点P的运动速度为v,根据等边三角形的性质可得出点P在AB上运动时△ACP的面积为S,也可得出点P在BC上运动时的表达式,继而结合选项可得出答案.【题目详解】设等边三角形的高为h,点P的运动速度为v,①点P在AB上运动时,△ACP的面积为S=hvt,是关于t的一次函数关系式;②当点P在BC上运动时,△ACP的面积为S=h(AB+BC-vt)=-hvt+h(AB+BC),是关于t的一次函数关系式;故选C.【题目点拨】此题考查了动点问题的函数图象,根据题意求出两个阶段S与t的关系式,难度一般.10、C【解题分析】
由平移的性质,结合图形,对选项进行一一分析,选择正确答案.【题目详解】沿直线边BC所在的直线向右平移得到,,,,,,,,但不能得出,故选C.【题目点拨】本题考查了平移的基本性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.二、填空题(每小题3分,共24分)11、①④【解题分析】
根据最简分式的定义逐式分析即可.【题目详解】①是最简分式;②=,不是最简分式;③=,不是最简分式;④是最简分式.故答案为2.【题目点拨】本题考查了最简分式的识别,与最简分数的意义类似,当一个分式的分子与分母,除去1以外没有其它的公因式时,这样的分式叫做最简分式.12、①②④⑤【解题分析】
①②∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE平分∠DAC,∴∠FAD=∠CAF=22.5°,∵BH=DF,∴△ABH≌△ADF,∴AH=AF,∠BAH=⊂FAD=22.5°,∴∠HAC=∠FAC,∴HM=FM,AC⊥FH,∵AE平分∠DAC,∴DF=FM,∴FH=2DF=2BH,故选项①②正确;③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的边长为2,∴AC=,MC=DF=﹣2,∴FC=2﹣DF=2﹣(﹣2)=4﹣,S△AFC=CF•AD≠1,所以选项③不正确;④AF===,∵△ADF∽△CEF,∴,∴,∴CE=,∴CE=AF,故选项④正确;⑤在Rt△FEC中,EG⊥FC,∴=FG•CG,cos∠FCE=,∴CG===1,∴DG=CG,∴=FG•DG,故选项⑤正确;本题正确的结论有4个,故答案为①②④⑤.13、【解题分析】
把3写成的平方,然后再利用平方差公式进行分解因式.【题目详解】解:x2﹣3=x2﹣()2=(x+)(x﹣).【题目点拨】本题考查平方差公式分解因式,把3写成的平方是利用平方差公式的关键.14、30°【解题分析】
根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.【题目详解】∵CC′∥AB,∴∠ACC′=∠CAB=75°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°-2∠ACC′=180°-2×75°=30°,∴∠CAC′=∠BAB′=30°.故答案为:30°.【题目点拨】本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.15、(5,1),(−1)【解题分析】
当P位于线段OA上时,显然△PFB不可能是直角三角形;由于∠BPF<∠CPF=90°,所以P不可能是直角顶点,可分两种情况进行讨论:
①F为直角顶点,过F作FD⊥x轴于D,BP=6-t,DP=1OC=4,在Rt△OCP中,OP=t-1,由勾股定理易求得CP=t1-1t+5,那么PF1=(1CP)1=4(t1-1t+5);在Rt△PFB中,FD⊥PB,由射影定理可求得PB=PF1÷PD=t1-1t+5,而PB的另一个表达式为:PB=6-t,联立两式可得t1-1t+5=6-t,即t=;
②B为直角顶点,得到△PFB∽△CPO,且相似比为1,那么BP=1OC=4,即OP=OB-BP=1,此时t=1.【题目详解】解:能;
①若F为直角顶点,过F作FD⊥x轴于D,则BP=6-t,DP=1OC=4,
在Rt△OCP中,OP=t-1,
由勾股定理易求得CP1=t1-1t+5,那
么PF1=(1CP)1=4(t1-1t+5);
在Rt△PFB中,FD⊥PB,
由射影定理可求得PB=PF1÷PD=t1-1t+5,
而PB的另一个表达式为:PB=6-t,
联立两式可得t1-1t+5=6-t,即t=,
P点坐标为(,0),
则F点坐标为:(−1);
②B为直角顶点,得到△PFB∽△CPO,且相似比为1,
那么BP=1OC=4,即OP=OB-BP=1,此时t=1,
P点坐标为(1,0).FD=1(t-1)=1,
则F点坐标为(5,1).
故答案是:(5,1),(−1).【题目点拨】此题考查直角三角形的判定、相似三角形的判定和性质,解题关键在于求有关动点问题时要注意分析题意分情况讨论结果.16、10【解题分析】
易求AB=10,则CE=1.设CD=x,则ED=DB=6-x.根据勾股定理求解.【题目详解】∵∠C=90°,AC=8,BC=6,∴AB=10.根据题意,AE=AB=10,ED=BD.∴CE=1.设CD=x,则ED=6−x.根据勾股定理得x1+11=(6−x)1,解得x=83.即CD长为8BD=6-83=【题目点拨】本题考查的知识点是翻折变换(折叠问题),解题的关键是熟练的掌握翻折变换(折叠问题).17、20【解题分析】
根据完全平方公式变形后计算,可得答案.【题目详解】解:故答案为:20【题目点拨】本题考查了二次根式的运算,能利用完全平方公式变形计算是解题关键.18、±3【解题分析】
∵=9,∴9的平方根是.故答案为3.三、解答题(共66分)19、(1)八(1)班的优秀率:,八(2)班的优秀率:;(2)八(2)班的成绩相对整齐;(3)600人.【解题分析】
(1)用95分或以上的人数除以总人数即可分别求出八(1)班和八(2)班的优秀率;(2)先分别求出八(1)班和八(2)班的平均数,再计算它们的方差,然后根据方差的定义,方差越小成绩越整齐得出答案;(3)用该校学生总数乘以样本优秀率即可.【题目详解】解:(1)八(1)班的优秀率是:×100%=40%,八(2)班的优秀率是:×100%=80%;(2)八(1)班的平均成绩是:(100+100+90+90+90)=94,方差是:[2×(100−94)2+3×(90−94)2]=24;八(2)班的平均成绩是:(95+95+95+95+90)=94,方差是:[4×(95−94)2+(90−94)2]=4;∵4<24,即八(2)班的方差<八(1)班的方差,∴八(2)班的成绩相对整齐;(3)1000×=600(人).答:该校大约有600名学生达到优秀.【题目点拨】本题考查方差的定义:一般地设n个数据x1,x2,…,xn的平均数为,则方差S2=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了利用样本估计总体.20、(1)证明见解析;(2)∠ADO==36°.【解题分析】
(1)先判断四边形ABCD是平行四边形,继而根据已知条件推导出AC=BD,然后根据对角线相等的平行四边形是矩形即可;(2)设∠AOB=4x,∠ODC=3x,则∠OCD=∠ODC=3x.,在△ODC中,利用三角形内角和定理求出x的值,继而求得∠ODC的度数,由此即可求得答案.【题目详解】(1)∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,又∵∠AOB=2∠OAD,∠AOB是△AOD的外角,∴∠AOB=∠OAD+∠ADO.∴∠OAD=∠ADO.∴AO=OD.又∵AC=AO+OC=2AO,BD=BO+OD=2OD,∴AC=BD.∴四边形ABCD是矩形.(2)设∠AOB=4x,∠ODC=3x,则∠ODC=∠OCD=3x,在△ODC中,∠DOC+∠OCD+∠CDO=180°∴4x+3x+3x=180°,解得x=18°,∴∠ODC=3×18°=54°,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO=∠ADC-∠ODC=90°-54°=36°.【题目点拨】本题考查了矩形的判定与性质,三角形内角和定理等知识,熟练掌握和灵活运用相关知识是解题的关键.21、(1)日销售量的最大值为120千克;(2)李刚家多宝鱼的日销售量y与上市时间x的函数解析式为.【解题分析】分析:(1)观察函数图象,找出拐点坐标即可得出结论;(2)设李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=kx+b,分0≤x≤12和12<x≤20,找出图象上点的坐标,利用待定系数法即可求出函数解析式.详解:(1)观察图象,发现当x=12时,y=120为最大值,∴日销售量的最大值为120千克.(2)设李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=kx+b,当0≤x≤12时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=10x;当12<x≤20时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=﹣15x+1.综上可知:李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=.点睛:本题考查了一次函数的应用、一次函数的图象以及待定系数法求函数解析式,解题的关键是:(1)观察函数图象,找出最高点;(2)分段利用待定系数法求出函数解析式.本题属于中档题,难度不大,解决该题型题目时,根据函数图象找出点的坐标,利用待定系数法求出函数解析式是关键.22、(1)5;(2);(3)当或时,⊿OCQ是等腰三角形.【解题分析】
(1)利用勾股定理先求出AC的长,继而根据已知条件即可求得答案;(2)延长QO交AD于点E,连接PE、PQ,先证明△AEO≌△CQO,从而得OE=OQ,AE=CQ=y,由垂直平分线的性质可得PE=PQ,即,在Rt⊿EDP中,有,在Rt⊿PCQ中,,继而可求得答案;(3)分CQ=CO,OQ=CQ,OQ=OC三种情况分别进行讨论即可求得答案.【题目详解】(1)∵四边形ABCD是长方形,∴∠ABC=90°,∴,∴OB=OA=OC=;(2)延长QO交AD于点E,连接PE、PQ,∵四边形ABCD是长方形,∴CD=AB=6,AD=BC=8,AD//BC,∴∠AEO=∠CQO,在△COQ和△AOE中,,∴△AEO≌△CQO(SAS),∴OE=OQ,AE=CQ=y,∴ED=AD-AE=8-y,∵OP⊥OQ,∴OP垂直平分EQ,∴PE=PQ,∴,∵PD=x,∴CP=CD-CP=6-x,在Rt⊿EDP中,,在Rt⊿PCQ中,,∴,∴;(3)分三种情况考虑:①如图,若CQ=CO时,此时CQ=CO=5;②如图,若OQ=CQ时,作OF⊥BC,垂足为点F,∵OB=OC,OF⊥BC,∴BF=CF=BC=4,∴,∵OQ=CQ,∴,∴,∴,∴;③若OQ=OC时,此时点Q与点B重合,点P在DC延长线上,此情况不成立,综上所示,当或时,⊿OCQ是等腰三角形.【题目点拨】本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,一次函数的应用等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.23、(1)购买了甲树10棵、乙树40棵;(2)至少应购买甲树30棵.【解题分析】
(1)首先设甲种树购买了x棵,乙种数购买了y棵,由题意得等量关系:①进甲、乙两种树共50棵;②购买两种树总金额为56000元,根据等量关系列出方程组,再解即可;(2)首先设应购买甲树x棵,则购买乙种树(50﹣a)棵,由题意得不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国微量元素行业运行动态及前景趋势预测报告
- 2025-2030年中国干冰清洗设备市场运营现状及投资前景规划研究报告
- 2025-2030年中国大型啤酒厂设备市场运行状况与前景趋势分析报告
- 2025-2030年中国吹塑机行业运营趋势与发展建议分析报告
- 二零二五年度集装箱运输企业信用评价与风险管理合同3篇
- 二零二五年环保节能型监控设备采购与技术支持合同2篇
- 二零二五版房屋租赁及转让合同全方位权益创新协议2篇
- 二零二五版文化创意产业园区使用权转让合同3篇
- 二零二五年度国际公路运输代理合同2篇
- 二零二五版城市绿化苗木租赁合同3篇
- 2023年山东省青岛市中考化学试题(含答案解析)
- 商业计划书(BP)产品与服务的撰写秘籍
- 安徽华塑股份有限公司年产 4万吨氯化石蜡项目环境影响报告书
- 公司章程(二个股东模板)
- 世界奥林匹克数学竞赛6年级试题
- 药用植物学-课件
- 文化差异与跨文化交际课件(完整版)
- 国货彩瞳美妆化消费趋势洞察报告
- 云南省就业创业失业登记申请表
- UL_标准(1026)家用电器中文版本
- 国网三个项目部标准化手册(课堂PPT)
评论
0/150
提交评论