九年级数学上学期期中真题分类汇编(人教版):专题02 一元二次方程的应用(解析版)(人教版)_第1页
九年级数学上学期期中真题分类汇编(人教版):专题02 一元二次方程的应用(解析版)(人教版)_第2页
九年级数学上学期期中真题分类汇编(人教版):专题02 一元二次方程的应用(解析版)(人教版)_第3页
九年级数学上学期期中真题分类汇编(人教版):专题02 一元二次方程的应用(解析版)(人教版)_第4页
九年级数学上学期期中真题分类汇编(人教版):专题02 一元二次方程的应用(解析版)(人教版)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题02一元二次方程的应用传播问题1.广东春季是流感的高发时期,某校4月初有一人患了流感,经过两轮传染后,共25人患流感,假设每轮传染中平均每人传染x人,则可列方程(

)A. B.C.D.【答案】C【分析】患流感的人把病毒传染给别人,自己仍然患病,包括在总数中.设每轮传染中平均一个人传染了个人,则第一轮传染了个人,第二轮作为传染源的是人,则传染人,依题意列方程:即可.【详解】解:设每轮传染中平均一个人传染了个人,依题意得,即,故选:C.【点睛】考查了一元二次方程的应用,本题要注意的是,患流感的人把病毒传染给别人,自己仍然是患者,人数应该累加,这个问题和细胞分裂是不同的.2.为增强学生体质,培养学生正确的体育思想和团队意识,2019年初某市开展了“篮球进园”活动.近日,该市篮球协会要组织初中学校的篮球队进行一次联赛,要求每两队之间进行一场比赛,计划安排5天,每天比赛3场,则参加比赛的球队数是()A.5 B.6 C.7 D.8【答案】B【分析】赛制为单循环形式(每两队之间都赛一场),个球队比赛总场数,由此可得出方程.【详解】解:设邀请个队,每个队都要赛场,但两队之间只有一场比赛,由题意得,,解得:故选:B.【点睛】本题考查了由实际问题抽象一元二次方程的知识,解决本题的关键是读懂题意,得到总场数与球队之间的关系.3.若有2个人患了流感,经过两轮传染后共有50人患了流感(这2个人在第二轮传染中仍有传染性),则每轮传染中平均一个人传染人.【答案】4【分析】设每轮传染中平均每个人传染了x人,再根据“经过两轮传染后共有50人患了流感”列方程求解即可.【详解】解:设每轮传染中平均每个人传染了x人,依题意得,解得:或(不合题意,舍去).所以,每轮传染中平均一个人传染了4个人.故答案为:4.【点睛】本题主要考查了一元二次方程的应用,读懂题意、准确找到等量关系列出方程是解答本题的关键.解增长率问题4.某农场去年种植西瓜5亩,总产量为.今年该农场扩大了种植面积,并引进新品种,使总产量增长到.已知种植面积的增长率是平均亩产量增长率的2倍,则平均亩产量的增长率为.【答案】【分析】设平均亩产量的增长率为x,则种植面积的增长率为,利用今年的总产量=今年的种植亩数×今年的平均亩产量,可列出关于x的一元二次方程,解之取其符合题意的值,即可得出结论.【详解】解:设平均亩产量的增长率为x,则种植面积的增长率为,根据题意得:,整理得:,解得:(不符合题意,舍去),∴平均亩产量的增长率为.故答案为:.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.5.某超市一月份的营业额为万元,一月、二月、三月的总营业额万元,如果平均每月增长率为,则由题意列方程为(

)A. B.C. D.【答案】D【分析】根据增长率分别表示出二月、三月的营业额即可求解.【详解】解:由题意得:二月的营业额为:三月的营业额为:故一月、二月、三月的总营业额为:故根据总营业额为万元,可列方程为:故选:D【点睛】本题考查增长率问题.分别表示出二月、三月的营业额是解题关键.6.某商品经过连续两次降价,价格由100元降为64元.已知两次降价的百分率都是x,则x满足的方程是()A. B. C. D.【答案】B【分析】若两次降价的百分率均是x,则第一次降价后价格为元,第二次降价后价格为元,根据题意找出等量关系:第二次降价后的价格元,由此等量关系列出方程即可.【详解】解:∵两次降价的百分率都是x,∴.故选:B.【点睛】本题主要考查列一元二次方程,关键在于读清楚题意,找出合适的等量关系列出方程.与几何有关问题7.如图(1),C为线段上一点,和均为等腰直角三角形,点F沿从点B匀速运动到点D,连接,令,图(2)是随时间变化的关系图像,则的长为(

)

A. B. C. D.【答案】C【分析】根据题意结合图1、图2可知,.设,根据等腰直角三角形的性质,可将未知与已知条件集中在中,利用勾股定理可解得x的值,从而使问题得解.【详解】连接.如下图.

根据题意结合图1、图2可知,.∵与均为等腰直角三角形,设,∴.在中,,即整理得:∴或(不合题意,舍去)即.∴【点睛】本题考查了等腰直角三角形的性质、勾股定理的应用、图标的分析等知识点,解题的关键是读懂图,推知的题设条件.8.利用图形分、和、移、补探索图形关系,是我国传统数学的一种重要方法.如图1,是长方形的对角线,将分割成两对全等的直角三角形和一个正方形,然后按图2重新摆放,观察两图,若,,则长方形的面积是.

【答案】【分析】设小正方形的边长为,利用、、表示矩形的面积,再用、、表示三角形以及正方形的面积,根据面积列出关于、、的关系式,解出,即可求出矩形面积.【详解】解:设小正方形的边长为,矩形的长为,宽为,由图1可得:,整理得:,,,,,矩形的面积为.故答案为:.【点睛】本题主要考查列代数式,一元二次方程的应用,设出小正方形的边长列一元二次方程和整体代换是解题的关键.9.如图,某学校有一块长,宽的长方形空地,计划在其中修建三块相同的长方形绿地,三块绿地之间及周边留有宽度相等的人行通道.

(1)若设计人行通道的宽度为,则三块长方形绿地的面积共多少平方米?(2)若三块长方形绿地的面积共,求人行通道的宽度.【答案】(1)三块的长方形绿地的面积共648平方米(2)人行通道的宽度为【分析】(1)根据题意得:三块长方形绿地的长为,宽为,可求得面积;(2)设人行通道的宽度为x米,则两块矩形绿地的长为,宽为,根据题意得:,解方程可得.【详解】(1)解:答:三块的长方形绿地的面积共648平方米;(2)解:设人行通道的宽度为x米,由题意,得,化简,得,解得,(不符合题意,舍去).答:人行通道的宽度为.【点睛】本题考查一元二次方程的应用,读懂题意,列出一元二次方程是解题的关键.销售利润问题10.某超市于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月的月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?【答案】(1)25%;(2)5元【分析】(1)设二、三这两个月的月平均增长率为x,则二月份的销售量为:件;三月份的销售量为:件,又知三月份的销售量为400件,由此等量关系列出方程求出x的值即可解答;(2)设当商品降价m元时,商品获利4250元,再利用“销量每件商品的利润4250”列出方程求解即可.【详解】(1)解:设二、三这两个月的月平均增长率为x,根据题意可得:,解得:,(不合题意舍去).答:二、三这两个月的月平均增长率为25%.(2)解:设当商品降价m元时,商品获利4250元,根据题意可得:,解得:,(不合题意舍去).答:当商品降价5元时,商品获利4250元.【点睛】本题主要考查了一元二次方程的实际应用,正确理解题意、找到等量关系列出方程是解题的关键.11.当今社会,“直播带货”已经成为商家的一种新型的促销手段.小亮在直播间销售一种进价为每件10元的日用商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)满足一次函数关系,它们的关系如下表:销售单价x(元)202530销售量y(件)200150100(1)求y与x之间的函数关系式;(2)该商家每天想获得2160元的利润,又要尽可能地减少库存,应将销售单价定为多少元?【答案】(1)y与x之间的函数关系式为:(2)应将销售单价定为22元【分析】(1)由于每天的销售量y(件)与销售单价x(元)满足一次函数关系,将值代入函数关系式,即可求出答案.(2)由题意将利润用含的式子表示出来,求出的值,再从中选取最小值即可.【详解】(1)解:设商品每天的销售量y(件)与销售单价x(元)满足一次函数关系,根据题意可得:,解得:,故y与x之间的函数关系式为:;(2)解:根据题意可得:,整理得:,,解得:(不合题意,舍去),,答:应将销售单价定为22元.【点睛】本题考查一次函数的应用,一元二次方程的应用,正确列出等量关系是解题的关键.12.为庆祝“五四青年节”,某校计划购买与两种墙贴共400张来布置校园.已知墙贴的售价是每张16元,墙贴的售价是每张20元,共花费7040元.(1)求计划购买,墙贴各多少张?(2)为了节省费用,学校采购人员最终决定在网上购买,墙贴每张售价减少了,增贴每张售价便宜了元,实际购买墙贴的数量比原计划增加了张,总数量不变,总费用比原计划减少了2140元,求的值.【答案】(1)购买240张墙贴,购买160张墙贴;(2)5【分析】(1)设计划购买张墙贴,购买张墙贴,根据“共400张来布置校园,已知墙贴的售价是每张16元,墙贴的售价是每张20元,共花费7040元”列出方程组,即可求解;(2)根据题意可得墙贴的售价为(元),墙贴的张数为张,种墙贴的售价为元,种墙贴的张数为张,再由总费用比原计划减少了2140元,列出方程,即可求解.【详解】(1)解:设计划购买张墙贴,购买张墙贴,由题意得,解得,答:计划购买240张墙贴,购买160张墙贴;(2)解:由题意得墙贴的售价为(元),墙贴的张数为张,种墙贴的售价为元,种墙贴的张数为张,由题意得,整理得,解得(舍去)或,∴的值为5.【点睛】本题主要考查了二元一次方程组的应用,一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.工程问题13.某工程队采用A,B两种设备同时对长度为3600米的公路进行施工改造.原计划A型设备每小时铺设路面比B型设备的2倍多30米,则30小时恰好完成改造任务.(1)求A型设备每小时铺设的路面长度;(2)通过勘察,此工程的实际施工里程比最初的3600米多了750米.在实际施工中,B型设备在铺路效率不变的情况下,时间比原计划增加了小时,同时,A型设备的铺路速度比原计划每小时下降了3m米,而使用时间增加了m小时,求m的值.【答案】(1)型设备每小时铺设的路面长度为90米(2)的值为10【分析】(1)设型设备每小时铺设路面米,则型设备每小时铺设路面米,根据题意列出方程求解即可;(2)根据“型设备铺设的路面长度型设备铺设的路面长度”列出方程,求解即可.【详解】(1)解:设型设备每小时铺设路面米,则型设备每小时铺设路面米,根据题意得,,解得:,则,答:型设备每小时铺设的路面长度为90米;(2)根据题意得,,整理得,,解得:,(舍去),∴的值为10.【点睛】本题主要考查一元一次方程、一元二次方程的应用,解题关键是读懂题意,找准等量关系并列出方程.14.由于疫情反弹,某地区开展了连续全员核酸检测,9月7日,医院派出13名医护人员到一个大型小区设置了、两个采样点进行核酸采样,当天共采样9220份,已知点平均每人采样720份,点平均每人采样700份.(1)求、两点各有多少名医护人员?(2)9月8日,医院继续派出这13名医护人员前往这个小区进行核酸采样,这天,社区组织者将附近数个商户也纳入这个小区采样范围,同时重新规划,决定从点抽调部分医护人员到点经调查发现,点每减少1名医护人员,人均采样量增加10份,点人均采样量不变,最后当天共采样9360份,求从点抽调了多少名医护人员到点?【答案】(1)A检测队有6人,B检测队有7人(2)从B检测队中抽调了2人到A检测队【分析】(1)设A点有x名医护人员,B点有y名医护人员,根据“A、B两个采样点共13名医护人员,且当天共采样9220份”,即可得出关于x,y的且当天共采样9220份,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设从B点抽调了m名医护人员到A点,则B点平均每人采样份,根据重新规划后当天共采样9360份,即可得出关于m的一元_二次方程,解之取其符合题意的值,即可得出结论.【详解】(1)解:设A检测队有人,B检测队有人,依题意得:,分解得:答:A检测队有6人,B检测队有7人;(2)解:设从B检测队中抽调了人到A检测队,则B检测队人均采样人,依题意得:,解得:,解得:,,由于从B对抽调部分人到A检测队,则故,答:从B检测队中抽调了2人到A检测队.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:(1)找准等关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元二次方程.15.公安部交管局部署“一盔一带”安全守护行动,带动了市场头盔的销量.某头盔经销商5至7月份统计,某品牌头盔5月份销售2250个,7月份销售3240个,且从5月份到7月份销售量的月增长率相同.请解决下列问题.(1)求该品牌头盔销售量的月增长率;(2)为了达到市场需求,某工厂建了一条头盔生产线生产头盔,经过一段时间后,发现一条生产线最大产能是900个/天,但如果每增加一条生产线,每条生产线的最大产能将减少30个/天,现该厂要保证每天生产头盔3900个,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?【答案】(1)该品牌头盔销售量的月增长率为20%(2)在增加产能同时又要节省投入的条件下,增加4条生产线【分析】(1)设该品牌头盔销售量的月增长率为x,根据题意列出一元二次方程进行求解;(2)设增加x条生产线,根据条件列出一元二次方程求解,再根据要节省投入的条件下,确定解.【详解】(1)解:设该品牌头盔销售量的月增长率为x.依题意,得:,解得:,(不合题意,舍去).答:该品牌头盔销售量的月增长率为20%.(2)解:设增加x条生产线.,解得,(不符合题意,舍去),答:在增加产能同时又要节省投入的条件下,增加4条生产线.【点睛】本题考查了一元二次方程的应用,解题的关键是根据题意列出相应的一元二次方程求解即可.16.在学习《完全平方公式》时,某数学学习小组发现:已知,,可以在不求、的值的情况下,求出的值.具体做法如下:.(1)若,则______;(2)若满足,求的值,同样可以应用上述方法解决问题.具体操作如下:解:设,,则,,所以.请参照上述方法解决下列问题:若,求的值;(3)如图,某校“园艺”社团在三面靠墙的空地上,用长12米的篱笆(不含墙)围成一个长方形花圃ABCD,花圃ABCD的面积为20平方米,其中墙AD足够长,墙墙AD,墙墙AD,米.随着学校“园艺”社团成员的增加,学校在花圃旁分别以边向外各扩建两个正方形花圃,以边向外扩建一个正方形花圃(如图所示虚线区域部分),请问新扩建花圃的总面积为______平方米.

【答案】(1)37(2)52(3)116【分析】(1)根据材料介绍方法解答即可;(2)仿照操作方法解答即可;(3)先说明,设米,则米,然后根据“花圃ABCD的面积为20平方米”列方程求得x,然后再列式求得扩建花圃的面积即可.【详解】(1)解:.(2)解:设,,则,,所以.(3)解:∵四边形长方形,∴,∵,∴,设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论