北师大版数学九年级上:第3章《概率的进一步认识》全章教案_第1页
北师大版数学九年级上:第3章《概率的进一步认识》全章教案_第2页
北师大版数学九年级上:第3章《概率的进一步认识》全章教案_第3页
北师大版数学九年级上:第3章《概率的进一步认识》全章教案_第4页
北师大版数学九年级上:第3章《概率的进一步认识》全章教案_第5页
已阅读5页,还剩78页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章概率的进一步认识

本/章/整/体/说/课

«教学目标

知识与技能

1.了解利用数据可以进行统计推断,发展建立数据分析观念,感受随机现象的特点.

2.能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,

了解事件的概率.

3.知道通过大量的重复试验,可以用频率来估计概率.

4.经历试验、收集与统计试验数据、分析试验结果等活动过程,进一步发展数据分析观念,体会概率与统

计的关系.

5.通过试验进一步感受随机事件发生的频率的稳定性,理解随机事件发生的频率与概率的关系,加深对

概率意义的理解.

噎程写用百

1.能运用列表和画树状图等方法计算一些简单事件发生的概率,能用试验频率估计一些较复杂随机事

件发生的概率.

2.能运用概率解决一些简单实际问题,进一步发展应用意识.

彳情感态度马猴殖

在活动过程中积累活动经验,体验与他人合作、交流的意义和作用.

a教材分析

七年级已经认识了许多随机事件,理论地研究了一些简单的随机事件发生的可能性.本章是上述内容的

延伸,进一步认识了频率与概率的关系,进而加深对概率的理解.通过试验,理解当试验次数较大时试验频率

稳定于理论概率,据此估计某一事件发生的概率.本章是围绕概率计算的两种方式一一理论计算和试验估算

展开的.对于没有理论概率或虽然存在理论概率,但其理论计算已超出了学生的认知水平的,学生借助试验模

拟获得其估计值,去估计随机事件发生的概率,让学生理解事件发生的频率与概率之间的关系.本章还介绍了

两种计算概率的方法一一树状图和列表法,以及利用试验频率和理论概率之间的关系,揭示统计推断的一些

理论依据,加强概率与统计的联系.

、、教学重难点

【重点】

1.感受数据的随机性.

2.了解随机现象的特点.

3.理解概率的意义.

【难点】

L能用列表法、画树状图法求概率.

2.会用频率估计概率.

、二教学建议

1.注重学生的合作和交流活动,在活动中促进知识的学习,并进一步发展学生合作交流的意识和能力.

2.引导学生积极参与试验活动,积累活动经验,体会概率与统计的关系.

3.在学生进行试验前,学生应懂得为什么要做试验,怎样做试验,小组分工要明确,每个人负责什么样的任

务,最后进行统计,然后分析数据彳导出结论.

4.教学应充分关注学生的认知冲突和学生的活动过程,要组织好学生进行试验.

5.注重引导学生积极参与试验活动,在试验中体会频率的稳定性■形成对概率的全面理解,发展学生初步

的辩证思维能力.

6.务必引导学生积极参与试验,学生通过大量试验还会发现,试验频率并不一定等于概率,虽然多次试验

的频率逐渐稳定于其理论概率,但也可能无论做多少次试验,试验频率仍然是理论概率的一个近似值,而不等

同于理论概率,两者存在着一定的偏差,应该说,偏差的存在是正常的、经常的.因此学生对概率的理解应是多

方面的,应尽量让学生通过具体试验领会这一点,从而形成对某一事件发生的概率有较为全面的理解,初步形

成随机观念,发展学生初步的辩证思维能力.

«课时划分

1用树状图或表格求概率3课时

2用频率估计概率1课时

课/时/教/学/详/案

1用树状图或表格求概率

«教学目标

F知识写技能”

通过试验,理解当试验次数较多时试验频率稳定于理论概率,并据此估计某一事件发生的概率.学习用树

状图和列表法计算涉及两步试验的随机事件发生的概率.

峭徨晶滑

经历计算理论概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯.经历试验、统计等

活动过程,在活动中进一步发展学生合作交流的意识和能力.

培养学生合作交流的意识和能力,提高学生对所研究问题的反思和拓展能力,逐步形成良好的反思意识.

鼓励学生积极参与数学活动,通过试验提高学生学习数学的兴趣.鼓励学生思维的多样性,发展学生的创新意

识.

教学重难点

【重点】会用树状图和列表的方法计算随机事件发生的概率.

【难点】理解事件出现的等可能性,正确地分析出两步试验中出现的所有情况.

第①课时

区L整体设计

,$教学目标

i.通过大量试验发现概率的大小.

2.会用树状图或表格求概率.

.过程行字

通过试验活动培养学生发现、总结问题的能力.

嘀蟋度身蒋前^

培养学生的交流与合作意识.

Q)教学重难点

【重点】用树状图或表格求概率.

【难点】通过大量试验发现概率的大小.

(勺教学准备

【教师准备】试验用的表格、硬币等.

【学生准备】复习有关概率的知识.

S教学过程

E新课导入

导入一:

如果我同时抛两枚一模一

样的质地均匀的正方体骰

子,你知道两次祥到的点数

一样的概率是多少吗?

抛两枚一模一样的质地均匀的正方体骰子可能出现哪些结果?它们发生的可能性是否一样?向上点数一样的

可能性又是多少?这些问题都可以用画树状图法或列表法进行求解.

导入二:

十一黄金周期间,梁先生驾驶汽车从甲地经乙地到丙地游玩.甲地到乙地有三条公路,乙地到丙地也有三

条公路,每条公路的长度如图所示,梁先生任选一条从甲地到丙地的路线,这条路正好是最短路线的可能性是

多少?说说你是怎么算出来的.

甲地

建新知构建

[过渡语]抛两枚硬币正反面朝上的概率情况是怎样的?

探究活动一:这个游戏公平吗?

小明、小颖和小凡都想周末去看电影,但只有一张电影票,三人决定一起做游戏,谁获胜谁就去看电影.游

戏规则如下:

连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反面朝上,则小颖获胜;若一枚正面朝

上、一枚反面朝上,则小凡获胜.

师生活动:学生分小组进彳五式验,然后累计各组的试验数据,分别计算这三个事件发生的频数与频率,并由

此估计这三个事件发生的概率教师参与到学生当中,给有困难的学生个别指导

[设计意图]本课问题情境的建立可以立足于自己班级学生的实际情况,也可以采用不同的问题环境进

行呈现,不需要局限于电影票.这样可以很好地吸引学生的参与,引发热烈的研究兴趣.

教师提问:

⑴掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?

⑵掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?

⑶在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果

第一枚硬币反面朝上呢?

学生思考并回答问题.

教师活动:我们通常借助树状图或表格列出所有可能出现的结果:

二枚硬币

第一枚窗市正反

正(正,正)(正,反)

反(反,正)(反,反)

第一枚硬币和第二枚硬币所有可能出现的结果总共有4种,每种结果出现的可能性相同,其中:

1

小明获胜的结果有1种:(正,正),所以小明获胜的概率是4

1

小颖获胜的结果有1种:(反,反),所以小颖获胜的概率也是Z

2

小凡获胜的结果有2种:(正,反)(反,正),所以小凡获胜的概率是4.

因此,这个游戏对三人是不公平的.

探究活动二:验证游戏的公平性.

师发给学生下面表格:

情况正,正正,反反,正反,反

次数

每个小组做20次试验,汇总后看看结果如何?

总结:在计算复杂事件发生的概率时往往采用画树状图或列表格法(下面统称列表法)进行分析,利用树

状图或表格,可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.

树状图法适合两步或两步以上完成的事件,列表法适合两步完成的事件.

[知识拓展]在利用画树状图法或列表法求概率时,各种情况出现的可能性必须相同,把可能性不同的

情况当成等可能的情况处理是错误的.

场课堂小结

不重不漏地

举列出所有可1.列表法:当一次试验要

法能的结果涉及两步时

求2.树状图法:当一次成验

概要涉及两步或更多步时

且检测反馈

1.从1,2,-3三个数中,随机抽取2个数相乘,积为正数的概率为()

12

A.0B.3C.3D.0

答案:B

2.小刚掷一枚质地均匀的正方体骰子,骰子的6个面分别刻有1到6的点数,则这个骰子向上的一面点数

大于3的概率为()

1121

A.2B.3c.3D.4

答案:A

3.我们可以用和的方法来计算发生的概率.

答案冽表法画树状图随机事件

4.用列出表格的方法来分析和求解某些事件的概率的方法叫,用画树状图的方法列出某事件

的所有可能的结果,求出其概率的方法叫.

答案:列表法树状图法

区板书设计

第1课时

1.探究活动一

树状图法

列表法

2.探究活动二

应布置作业

一、教材作业

【必做题】

教材第62页习题3.1的1,2题.

【选做题】

教材第62页习题3.1的3题.

二、课后作业

【基础巩固】

1.学生甲与学生乙玩一种转盘游戏.下图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别

用数字"1""2""3""4"表示,固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇

数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次.在该游戏中

乙获胜的概率是()

1135

A.4B.2C.4D.6

2.5月19日为中国旅游日,衢州推出"读万卷书,行万里路,游衢州景"的主题系列旅游惠民活动,市民王先生

准备在优惠日当天上午从孔氏南宗家庙、烂柯山、龙游石窟中随机选择一个地点;下午从江郎山、三衢石林、

开化根博园中随机选择一个地点游玩,则王先生恰好上午选中孔氏南宗家庙,下午选中江郎山这两个地点的

概率是()

1122

A.9B.3c.3D.9

【能力提升】

3.小明从家到学校沿途需经三个路口,每个路口都设有红、绿两种颜色的信号灯,在信号灯都正常的情况下:

⑴请用树状图列举小明遇到交通信号灯的所有情况;

⑵小明遇到两次绿色信号灯的概率有多大?

⑶小明红、绿色两种信号灯都遇到的概率有多大?

【拓展探究】

4.准备三张完全相同的纸片,两张纸片上各画一个三角形,另一张纸片上画一个正方形,如果将这三张纸片放

在一个盒子里搅匀,那么随机地抽取两张纸片,可能拼成一个菱形(取出的是两张画三角形的纸片),也可能拼

成一个房子(取出的是一张画三角形和一张画正方形的纸片),这个游戏的规则是这样的:若拼成一个菱形,甲

赢,若拼成一个房子,乙赢.你认为这个游戏是公平的吗?说明你的理由.

【答案与解析】

1.C(解析:所有出现的情况如下表,共有16种情况,

每种情况出现的可能性相同,积为奇数的有4种情况,所以在该游戏中甲获胜的概率是,乙获胜的概率为.故选

C.)

2.A(解析:画出树状图如图所示,,一共有9种等可

开始

上午孔氏南宗家庙烂柯山龙游石窟

下午江郎三衢开化根江郎三衙开化根江郎三衢开化根

山石林博园山石林博园山石林博园

能的结果,王先生恰好上午选中孔氏南宗家庙,下午选中江郎山有1种情况,,王先生恰好上午选中孔氏南宗

1

家庙,下午选中江郎山这两个地点的概率是9故选A.)

3.解:⑴根据题意画出树状图如图所示.一共有8种

路口1

路口2

路口3红绿红绿红绿红绿

3

等可能的情况.(2)遇到两次绿色信号灯的情况有3种,所以遇到两次绿色信号灯的概率是a

⑶遇到红、绿色两种信号灯的情况有6种,所以遇到红、绿色两种信号灯的概率是

4.解:不公平.理由如下:这是随机事件,抽到哪两张的概率是相等的.随机地抽取两张,结果有三种:"两张画三

角形的纸片""一张画三角形和一张画正方形的纸片""一张画三角形和一张画正方形的纸片”,

□(△□)

△<△(△△)

□(△□)

开始

△<△(△△)

0<

所以说拼成一个房子的可能要大,对于甲和乙机会是不均等的,所以游戏不公平.画出树状图如图所示,拼成

12

-<c-

一个菱形的概率是,拼成一个房子的概率是,因为33,所以这个

游戏不公平.

区教学反思

(却成功之处

学生通过游戏活动体验了概率情况的不确定性通过树状图和表格帮助学生认识分析概率情况的基本

方法,这是本课时的最大成功之处.

$不足之处

树状图和表格有着不同的适用对象,虽然在教学的过程中对此作了说明和介绍,但学生还是缺乏实际操

作的体验,这一点在课堂上做的不够.

(筝,再教设计

从课时的教学内容看,本课时是内容比较浅显的概率问题.为深化学生的理解,可以让学生自己尝试设计

类似游戏的方式,对游戏的公平性给出自己的评价.不管设计的是公平游戏还是不公平的游戏,教师都要从知

识的角度给予鼓励性的雨介.

国教材习题解答

随堂练习(教材第61页)

解:列表格得:

子颜色

上衣漏巷、、里“♦八白

红(红.黑)(红,白)

白(白.黑)(白,白)

1

•,•小颖共有4种不同的穿法,...恰好是白色上衣和白色裤子的概率是4

习题3.1(教材第62页)

1.解:画树状图如右图所示,共有4种等可能的结果.⑴两张牌的牌面数字和可能是2或3或4.⑵两张牌的

牌面数字和是3的概率最大.⑶两张牌的牌面数字和是3的概

开始

12

/\/\

1212

2334

率是

2.解:列表得:

红白

红(红,红)(红,白)

白(白,红)(白,白)

1

,一共有4种等可能的结果.⑴两次都摸到红球的概率为Z⑵两次摸到不同颜色的球的概率为

3.解:出现“正面朝上"和"反面朝上"的可能性相同.无论前面两次所掷硬币的结果怎么样,第三次掷硬币

1

出现“正面朝上"和"反面朝上"的可能性都是相同的,概率都是2

国备课资源

"教学建议

本课时主要讲解用列表法或树状图法求随机事件发生的概率.

⑴利用树状图或表格可以清晰地表示出某个事件发生时所有可能出现的结果,能较方便地求出某些事

件发生的概率.

⑵当涉及求两步完成的随机事件的概率时,既可以用树状图表示,也可以用列表法来表示,当涉及求两步

以上的随机事件的概率时,一般用树状图表示.

⑶无论是用列表法求概率,还是用树状图法求概率,其共同的前提是各种结果发生的可能性相同.

"经典例题

陶小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则:在一个不透明的袋子

里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再

从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华

去参赛.

⑴用列表法或画树状图法求小丽参赛的概率;

⑵你认为这个游戏公平吗?请说明理由.

〔解析〕⑴列表或树状图得出所有等可能的情况数,找出数字之和为偶数的情况数,即可求出小丽去

参赛的概率.⑵由小丽参赛的概率求出小华参赛的概率,比较即可得到游戏公平与否.

解:(1)解法1:根据题意列表得:

\第一次

、摸球

第二浣;2345

摸球、

2—(3,2)(4,2)(5,2)

3(2,3)—(4,3)(5,3)

4(2,4)(3,4)—(5,4)

5(2,5)(3,5)(4,5)—

由表可知所有可能结果共有12种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字和为偶数的

结果有4种,分别是⑵4),(3,5),(4,2),(5,3),所以小丽参赛的概率为.解法2:根据题意画出树状图如图所示,由树

状图可知所有可能

开始

第一次摸球2345

/TX/Tx/Tx/IX

第二次摸球345245235234

所有可能结果(2.3)(2.4)(2.5)(3.21(3.4)(3.5)(42)(43)(45)(5.2)(5.3)(5.4)

结果共有12种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字和为偶数的结果有4种,分别是

⑵4),(3,5),(4⑵,(5,3),所以小丽参赛的概率为.⑵游戏不公平.理由如下:因为小丽参赛的概率为3,所以小华

12

参赛的概率为1-,因为5所以这个游戏不公平.

第②课时

——整体设.

"教学目标

嗾口识写技叙

尝试用树状图分析概率.

嗤程躬奏

通过树状图对概率进行分析,体会概率的随机性.

「情感态度与侨盾留

培养学生的合作、分享的意识.

教学重难点

【重点】用树状图分析概率.

【难点】不漏掉存在的可能性.

♦教学准备

【教师准备】本课时的教学例题投影.

【学生准备】了解分析复杂概率情况的方法.

旧教学过程

E新课导入

导入一:

某一家庭有3个孩子.

(1)求这个家庭有3个男孩的概率;

(2)求这个家庭有2个男孩和I个女孩的概率;

(3)求这个家庭至少有一个男孩的概率.

导入二:

宝宝和贝贝是一对双胞胎,他们参加市少年志愿者选拔并与甲、乙、丙三人都进入了前5名,现从这5名

入选者中确定2名为志愿者,试用画树状图形的方法求出:

(1)宝宝和贝贝同时入选的概率;

⑵宝宝和贝贝至少有一个人入选的概率.

除新知构建

[过渡语]"石头、剪刀、布”是中国古代传统的游戏,我们看下这个游戏是否公平.

探索活动:游戏是否公平.

(教材例1)小明、小颖和小凡做"石头、剪刀、布"游戏.游戏规则如下:

名瑟)9

剪刀石头布

由小明和小颖做"石头、剪刀、布"的游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那

么按照"石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三

种手势的可能性相同,你认为这个游戏对三人公平吗?

解:因为小明和小颖每次出这三种手势的可能性相同,所以可以利用树状图列出所有可能出现的结果:

小明力籁所有可能出现的结果

(石头,石头)

/石头(剪刀

(石头,剪刀)

/\布

(石头,布)

//石头

(剪刀,石头)

开始L剪刀《剪刀肉刀,剪刀)

\/石头(剪刀,布)

肉,石头)

'布《剪刀怖,剪刀)

\布

(布,枸

总共有9种可能的结果,每种结果出现的可能性相同,其中两人手势相同的结果有3种:(石头,石头),(剪刀,

剪刀),(布,布),

所以小凡获胜的概率为;

小明胜小颖的结果有3种:(石头,剪刀),(剪刀,布),(布,石头),所以小明获胜的概率为

小颖胜小明的结果也有3种:(石头布),(剪刀,石头),(布,剪刀),所以小颖获胜的概率为

因此,这个游戏对三人是公平的.

做f

小明和小军两人一起做游戏,游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次质地

均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之

和,就再做一次上述游戏,直至决出胜负.如果你是游戏者,你会选择哪个数?

〔解析〕这个问题看上去很复杂,实际上它等同于下面的问题:两人各掷一次质地均匀的骰子,将两人

掷得的点数相加,点数为几的概率最大?

解:可以用列表的方法得到,掷得的点数之和是7的概率最大,所以一般来说,选择7这个数获胜的可能性

最大.

E课堂小结

当事件涉及三个或三个以上元素时,用列表法不易列举出所有的可能,用画树状图则可以依次列出所有

可能的结果.

网检测反馈

L掷一枚硬币三次,落地后三次正面都朝上的概率为()

1131

A.8B.4c.8D,2

解析:可以用树状图来表示所有可能的情况,画出树状图如图所示,所有等可能出现的结果有8种:

开始

掷第一次正反

掷第二次正反正反

/\/\/\z\

掷第三次正反正反正反正反

(正正正),(正正,反),(正反正),(正反,反),(反正正),(反,正,反),(反反,正),(反,反,反),其中三次正面都朝上的结

1

果有1种,所以三次正面都朝上的概率是a故选A.

2.一个家庭有两个小孩,则这两个小孩是一男一女的概率是(假定小孩是男是女是等可能的).

解析:两个小孩的所有可能是(男,男),(男,女),(女,男),(女,女),而男女各f的可能有两种,所以男女各f

1

的概率为.故填2.

区板书设计

第2课时

探索活动:游戏是否公平

例题

做一做

所布置作业

一、教材作业

【必做题】

教材第64页习题3.2的1题.

【选做题】

教材第64页习题3.2的5题.

二、课后作业

【基础巩固】

1.某校安排三辆车组织九年级学生去敬老院参加学雷锋活动,其中小王和小菲都可以从这三辆车中任选一

辆搭乘,则小王和小菲同车的概率为()

1112

A.3B,9c.2D,3

2.小颖有红色、黄色、白色的三件运动上衣和白色、灰色两条运动短裤,若任意选取T牛上衣和一条短裤进

行组合,则恰好是“衣裤同色"的概率是.

【能力提升】

3.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是.

4.在一个不透明的口袋里,装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1

个,若从中任意摸出一个球,这个球是白色的概率为0.5.

⑴求口袋中红球的个数;

⑵若摸到红球计0分,摸到白球计1分,摸到黄球计2分,甲从口袋中摸出一个球,不放回,再摸出一个,用画树状

图的方法求甲摸两个球且得2分的概率.

【拓展探究】

5.甲、乙玩转盘游戏时,把质地相同的两个转盘48分别平均分成2份和3份,并在每一份内标有数字,如图所

示,游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲

获胜,数字之和为奇数时乙获胜,若指针落在分界线上,则需要重新转动转盘.

⑴用画树状图的方法求甲获胜的概率;

⑵这个游戏对甲、乙双方公平吗?请判断并说明理由.

【答案与解析】

1.A(解析:设3辆车分别为甲、乙、丙,画出树状图如图所示,共有9种情况,每种情况出现的可能性相

开始

小王入入外

小非甲乙丙甲乙丙甲乙丙

1

同,小王和小菲坐同一辆车的情况有3种,所以小王和小菲坐同一辆车的概率为8故选A.)

1

2.%(解析:画出树状图可知共有6种组合每种组合出现的可能性相同,恰好是“衣裤同色”的有1种,所以概

11

率是“.故填6.)

开始

上衣红黄

AA

短裤白灰白灰

2

3.§(解析:画树状图如图所示,共有6种等可能的情况,甲、乙二人相邻的有4种情况,所以甲、乙二人相邻的

2

.故填?.)

概率是

开始

甲乙丙

AAA

乙丙甲丙甲z

IIIIII

丙乙丙甲乙H

4.解:(1)设口袋中红球的个数为x根据题意得=0.5,解得x=1.所以口袋中组求的个数为

1.(2)画树状图如图所示,因为摸到红球计

开始

第一个球红白白黄

/K

第二个球白白黄红白黄红白黄红白白

0分,摸到白球计1分,摸到黄球计2分,所以当摸得的两个球都是白球或一个黄球和一个红球时得2分,所以

摸两个球且得2分的概率为.

5.解:⑴画树状图如图所示,共有6种等可能的结果,两数之和为偶数的有2种情况,所以8甲获胜)=

⑵不公平.理由如下:因为数字之和为奇数的情况有4种,所以凡乙获胜)=

,因为尺甲获胜)/凡乙获胜),所以这个游戏规则对甲、乙双方不公平.

开始

/X

甲13

/K/N

乙234234

和345567

S教学反思

Q成功之处

尝试用树状图准确分析事件发生的概率是本课时的教学重点和难点,为了让学生充分了解分析过程,本

课时的教学过程中给学生展现了详细的分析过程.这样做不但让学生看到了对事情结果的分析,也领会到了

利用树状图分析概率的要点.

不足之处

在本课时的"做TT教学活动过程中,留给学

生课堂交流合作的时间不多,不利于学生深刻领会本课时的学习要点,也没有为学生搭建良好的合作、探

究平台.

Q再教设计

对于新课导入中提及的问题,在教学活动中可以作为例题或者活动来处理使得学生的课前兴趣能与本

课时教学建立起一个连接点.

目教材习题解答

随堂练习(教材第64页)

解汐U表格得:

1下2下3下

1±(1上,1下)(1±,2下)(1±,3下)

2±(2上,1下)(2±,2下)(2±,3下)

3上(3上,1下)(3上,2下)(3上,3下)

•••共有9种不同的拼法,J.能拼成一幅画的概率是

习题3.2(教材第64页)

1.解:画出树状图如图所示,共有9种情况.⑴两张牌的牌面数字和等于1的概率是0.(2)两张牌的牌面数字

11

和等于2的概率是于(3)两张牌的牌面数字和等于4的概率最大,为‘⑷两张牌的牌面数字和大于3的

概率为

开始

和234345456

1

2.解:画出树状图如图所示.共有9种等可能的结果.(1)两人都左拐的概率为9(2)恰好有一人直行,另一人

25

左拐的概率为2(3)至少有一人直行的概率为9.

开始

直行左拐右拐

直行左拐右拐直行左拐右拐直行左拐右拐

3.解:列表得:

123456

1(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)

2⑵1)(2,2)(2,3)(2,4)(2,5)(2,6)

3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)

4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)

5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)

6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)

11

共有6x6=36种等可能的情况.⑴至少有一枚骰子的点数为1的概率是36.⑵两枚骰子的点数和为奇数

1

的概率是2(3)两枚骰子的点数和大于9的概率.(4)第二枚骰子的点数整除第一枚骰子的点数的概率

是.

4.解:将出现的可能结果列表如下:

\

如123456

1(1,1)(1.2)(1,3)(1.4)(1.5)(1.6)

2(2,1)(2.2)(2.3)(2,4)(2.5)(2.6)

3(3,1)(3,2)(3.3)(3,4)(3.5)(3,6)

4(4.1)(4.2)(4,3)(4.4)(4,5)(4.6)

5(5,1)(5,2)(5,3)(5.4)(5,5)(5,6)

6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)

1

由表可知,共有36种等可能的结果.(1)因为尺小军获胜)=尺小明获胜)=2所以游戏对双方公平.(2)因为

H小军获胜)=人小明获胜)=,所以这个游戏对双方不公平.

5.解:小明不能一次得到"汽车"了.•骰子的最大数为6,而汽车距离小明的棋子还有7格,.•.小明掷一次骰子

不能得到"汽车".小红下一次掷骰子可能得到"汽车".只要小明和小红掷得到点数和为7,小红就能得到

"汽车”.由列表得:

123456

1234567

2345678

3456789

45678910

567891011

6789101112

••・一共有36种等可能的情况,它们的点数和是7共有6种情况,小红下一次得到"汽车”的概率是.

6.解:公平,分别用1,2,3表示"石头""剪刀""布"三种手势,画出树状如图所示.共有27种等可能的结果,

小明、小颖、小凡获胜的概率相同.

开始

小明23

力播123123123

/N/N/N/K/1\/N/T\/N/N

小凡123123123123123123123123123

0备课资源

。,经典例题

例1某校决定从两名男生和三名女生中选出两名同学作为升国旗活动主持人很!J选出一男一女的概

率是________

〔解析〕画树状图如图所示,共有20种等可能

开始

男女女女男女女女男男女女男男女女男男女女

3

的结果,选出一男一女的结果有12种,所以选出一男一女的概率是.故填子

例2(2021•锦州中考)一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4,另有一

个可以自由旋转的圆盘,被分成面积相等的3个扇形区域,分别标有数字1,2,3(如图所示).小颖和小亮想通过

游戏来决定谁代表学校参加歌咏比赛,游戏规则:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球

上的数字与圆盘上转出数字之和小于4(转到边界就重复上述过程),那么小

颖去;否则小亮去.你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.

解:不公平.画树状图如图所示

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论