版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省鹤壁市浚县第二高级中学2024年高考仿真卷数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在展开式中的常数项为A.1 B.2 C.3 D.72.已知定义在上的函数在区间上单调递增,且的图象关于对称,若实数满足,则的取值范围是()A. B. C. D.3.已知斜率为2的直线l过抛物线C:的焦点F,且与抛物线交于A,B两点,若线段AB的中点M的纵坐标为1,则p=()A.1 B. C.2 D.44.是正四面体的面内一动点,为棱中点,记与平面成角为定值,若点的轨迹为一段抛物线,则()A. B. C. D.5.已知复数,则的虚部为()A.-1 B. C.1 D.6.己知全集为实数集R,集合A={x|x2+2x-8>0},B={x|log2x<1},则等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)7.已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是()A.该超市2018年的12个月中的7月份的收益最高B.该超市2018年的12个月中的4月份的收益最低C.该超市2018年1-6月份的总收益低于2018年7-12月份的总收益D.该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元8.阅读如图的程序框图,运行相应的程序,则输出的的值为()A. B. C. D.9.设函数,则,的大致图象大致是的()A. B.C. D.10.设,,,则()A. B. C. D.11.已知、分别为双曲线:(,)的左、右焦点,过的直线交于、两点,为坐标原点,若,,则的离心率为()A.2 B. C. D.12.已知,且,则在方向上的投影为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知平面向量,的夹角为,且,则=____14.已知向量满足,,则______________.15.已知等差数列的各项均为正数,,且,若,则________.16.对任意正整数,函数,若,则的取值范围是_________;若不等式恒成立,则的最大值为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列中,a1=1,其前n项和为,且满足.(1)求数列的通项公式;(2)记,若数列为递增数列,求λ的取值范围.18.(12分)设,,,.(1)若的最小值为4,求的值;(2)若,证明:或.19.(12分)已知函数.(1)讨论函数的极值;(2)记关于的方程的两根分别为,求证:.20.(12分)已知椭圆的离心率为,且过点,点在第一象限,为左顶点,为下顶点,交轴于点,交轴于点.(1)求椭圆的标准方程;(2)若,求点的坐标.21.(12分)某学校为了解全校学生的体重情况,从全校学生中随机抽取了100人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.(1)估计这100人体重数据的平均值和样本方差;(结果取整数,同一组中的数据用该组区间的中点值作代表)(2)从全校学生中随机抽取3名学生,记为体重在的人数,求的分布列和数学期望;(3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.22.(10分)已知等差数列an,和等比数列b(I)求数列{an}(II)求数列n2an⋅a
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
求出展开项中的常数项及含的项,问题得解。【详解】展开项中的常数项及含的项分别为:,,所以展开式中的常数项为:.故选:D【点睛】本题主要考查了二项式定理中展开式的通项公式及转化思想,考查计算能力,属于基础题。2、C【解析】
根据题意,由函数的图象变换分析可得函数为偶函数,又由函数在区间上单调递增,分析可得,解可得的取值范围,即可得答案.【详解】将函数的图象向左平移个单位长度可得函数的图象,由于函数的图象关于直线对称,则函数的图象关于轴对称,即函数为偶函数,由,得,函数在区间上单调递增,则,得,解得.因此,实数的取值范围是.故选:C.【点睛】本题考查利用函数的单调性与奇偶性解不等式,注意分析函数的奇偶性,属于中等题.3、C【解析】
设直线l的方程为x=y,与抛物线联立利用韦达定理可得p.【详解】由已知得F(,0),设直线l的方程为x=y,并与y2=2px联立得y2﹣py﹣p2=0,设A(x1,y1),B(x2,y2),AB的中点C(x0,y0),∴y1+y2=p,又线段AB的中点M的纵坐标为1,则y0(y1+y2)=,所以p=2,故选C.【点睛】本题主要考查了直线与抛物线的相交弦问题,利用韦达定理是解题的关键,属中档题.4、B【解析】
设正四面体的棱长为,建立空间直角坐标系,求出各点的坐标,求出面的法向量,设的坐标,求出向量,求出线面所成角的正弦值,再由角的范围,结合为定值,得出为定值,且的轨迹为一段抛物线,所以求出坐标的关系,进而求出正切值.【详解】由题意设四面体的棱长为,设为的中点,以为坐标原点,以为轴,以为轴,过垂直于面的直线为轴,建立如图所示的空间直角坐标系,则可得,,取的三等分点、如图,则,,,,所以、、、、,由题意设,,和都是等边三角形,为的中点,,,,平面,为平面的一个法向量,因为与平面所成角为定值,则,由题意可得,因为的轨迹为一段抛物线且为定值,则也为定值,,可得,此时,则,.故选:B.【点睛】考查线面所成的角的求法,及正切值为定值时的情况,属于中等题.5、A【解析】
分子分母同乘分母的共轭复数即可.【详解】,故的虚部为.故选:A.【点睛】本题考查复数的除法运算,考查学生运算能力,是一道容易题.6、D【解析】
求解一元二次不等式化简A,求解对数不等式化简B,然后利用补集与交集的运算得答案.【详解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
则,
∴.
故选:D.【点睛】本题考查了交、并、补集的混合运算,考查了对数不等式,二次不等式的求法,是基础题.7、D【解析】
用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项.【详解】用收入减去支出,求得每月收益(万元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个月收益增长万元,所以D选项说法错误.故选D.【点睛】本小题主要考查图表分析,考查收益的计算方法,属于基础题.8、C【解析】
根据给定的程序框图,计算前几次的运算规律,得出运算的周期性,确定跳出循环时的n的值,进而求解的值,得到答案.【详解】由题意,,第1次循环,,满足判断条件;第2次循环,,满足判断条件;第3次循环,,满足判断条件;可得的值满足以3项为周期的计算规律,所以当时,跳出循环,此时和时的值对应的相同,即.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中认真审题,得出程序运行时的计算规律是解答的关键,着重考查了推理与计算能力.9、B【解析】
采用排除法:通过判断函数的奇偶性排除选项A;通过判断特殊点的函数值符号排除选项D和选项C即可求解.【详解】对于选项A:由题意知,函数的定义域为,其关于原点对称,因为,所以函数为奇函数,其图象关于原点对称,故选A排除;对于选项D:因为,故选项D排除;对于选项C:因为,故选项C排除;故选:B【点睛】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.10、A【解析】
先利用换底公式将对数都化为以2为底,利用对数函数单调性可比较,再由中间值1可得三者的大小关系.【详解】,,,因此,故选:A.【点睛】本题主要考查了利用对数函数和指数函数的单调性比较大小,属于基础题.11、D【解析】
作出图象,取AB中点E,连接EF2,设F1A=x,根据双曲线定义可得x=2a,再由勾股定理可得到c2=7a2,进而得到e的值【详解】解:取AB中点E,连接EF2,则由已知可得BF1⊥EF2,F1A=AE=EB,设F1A=x,则由双曲线定义可得AF2=2a+x,BF1﹣BF2=3x﹣2a﹣x=2a,所以x=2a,则EF2=2a,由勾股定理可得(4a)2+(2a)2=(2c)2,所以c2=7a2,则e故选:D.【点睛】本题考查双曲线定义的应用,考查离心率的求法,数形结合思想,属于中档题.对于圆锥曲线中求离心率的问题,关键是列出含有中两个量的方程,有时还要结合椭圆、双曲线的定义对方程进行整理,从而求出离心率.12、C【解析】
由向量垂直的向量表示求出,再由投影的定义计算.【详解】由可得,因为,所以.故在方向上的投影为.故选:C.【点睛】本题考查向量的数量积与投影.掌握向量垂直与数量积的关系是解题关键.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
根据平面向量模的定义先由坐标求得,再根据平面向量数量积定义求得;将化简并代入即可求得.【详解】,则,平面向量,的夹角为,则由平面向量数量积定义可得,根据平面向量模的求法可知,代入可得,解得,故答案为:1.【点睛】本题考查了平面向量模的求法及简单应用,平面向量数量积的定义及运算,属于基础题.14、1【解析】
首先根据向量的数量积的运算律求出,再根据计算可得;【详解】解:因为,所以又所以所以故答案为:【点睛】本题考查平面向量的数量积的运算,属于基础题.15、【解析】
设等差数列的公差为,根据,且,可得,解得,进而得出结论.【详解】设公差为,因为,所以,所以,所以故答案为:【点睛】本题主要考查了等差数列的通项公式、需熟记公式,属于基础题.16、【解析】
将代入求解即可;当为奇数时,,则转化为,设,由单调性求得的最小值;同理,当为偶数时,,则转化为,设,利用导函数求得的最小值,进而比较得到的最大值.【详解】由题,,解得.当为奇数时,,由,得,而函数为单调递增函数,所以,所以;当为偶数时,,由,得,设,,单调递增,,所以,综上可知,若不等式恒成立,则的最大值为.故答案为:(1);(2)【点睛】本题考查利用导函数求最值,考查分类讨论思想和转化思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)项和转换可得,继而得到,可得解;(2)代入可得,由数列为递增数列可得,,令,可证明为递增数列,即,即得解【详解】(1)∵,∴,∴,即,∴,∴,∴.(2).=2·-λ(2n+1).∵数列为递增数列,∴,即.令,即.∴为递增数列,∴,即的取值范围为.【点睛】本题考查了数列综合问题,考查了项和转换,数列的单调性,最值等知识点,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.18、(1)2;(2)见解析【解析】
(1)将化简为,再利用基本不等式即可求出最小值为4,便可得出的值;(2)根据,即,得出,利用基本不等式求出最值,便可得出的取值范围.【详解】解:(1)由题可知,,,,,∴.(2)∵,∴,∴,∴,即:或.【点睛】本题考查基本不等式的应用,利用基本不等式和放缩法求最值,考查化简计算能力.19、(1)见解析;(2)见解析【解析】
(1)对函数求导,对参数讨论,得函数单调区间,进而求出极值;(2)是方程的两根,代入方程,化简换元,构造新函数利用函数单调性求最值可解.【详解】(1)依题意,;若,则,则函数在上单调递增,此时函数既无极大值,也无极小值;若,则,令,解得,故当时,,单调递增;当时,,单调递减,此时函数有极大值,无极小值;若,则,令,解得,故当时,,单调递增;当时,,单调递减,此时函数有极大值,无极小值;(2)依题意,,则,,故,;要证:,即证,即证:,即证,设,只需证:,设,则,故在上单调递增,故,即,故.【点睛】本题考查函数极值及利用导数证明二元不等式.证明二元不等式常用方法是转化为证明一元不等式,再转化为函数最值问题.利用导数证明不等式的基本方法:(1)若与的最值易求出,可直接转化为证明;(2)若与的最值不易求出,可构造函数,然后根据函数的单调性或最值,证明.20、(1);(2)【解析】
(1)由题意得,求出,进而可得到椭圆的方程;(2)由(1)知点,坐标,设直线的方程为,易知,可得点的坐标为,联立方程,得到关于的一元二次方程,结合根与系数关系,可用表示的坐标,进而由三点共线,即,可用表示的坐标,再结合,可建立方程,从而求出的值,即可求得点的坐标.【详解】(1)由题意得,解得,所以椭圆的方程为.(2)由(1)知点,,由题意可设直线的斜率为,则,所以直线的方程为,则点的坐标为,联立方程,消去得:.设,则,所以,所以,所以.设点的坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《硫酸工艺学》课件
- 二尿素装置安全课课件
- 《烧伤基础知识》课件
- 《湖南乡土地理》课件
- 《孕妇学校讲课》课件
- 单位管理制度集合大合集职工管理
- 单位管理制度集粹汇编人员管理篇十篇
- 单位管理制度分享汇编【人力资源管理篇】十篇
- 单位管理制度分享大全职员管理篇十篇
- 2024教师安全责任协议书(28篇)
- GB/T 23586-2022酱卤肉制品质量通则
- 抗震支架计算书
- 大学生如果提高自己安全意识
- 意识障碍的判断及护理
- 《尾矿库安全监测技术规范》
- 人工智能基础与应用(第2版)全套教学课件
- 数据资产入表理论与实践
- 《建筑施工安全检查标准》JGJ59-20248
- 磁共振技术在食品加工中的应用
- 国家应急救援员(五级)理论考核试题及答案
- 材料测试方法智慧树知到期末考试答案2024年
评论
0/150
提交评论