




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广西贺州市昭平县数学八年级第二学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A. B. C. D.22.当x=1时,下列式子无意义的是()A.13x B.2xx+1 C.13.一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集为()A.x>-3 B.x>0 C.x<-2 D.x<04.下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数x与方差s2:甲乙丙丁平均数175173175174方差s23.53.512.515根据表中数据,要从中进选择一名成的绩责好又发挥稳定的运动员参加比赛,应该选择()A.乙 B.甲 C.丙 D.丁5.若一次函数y=kx+b的图象经过一、二、四象限,则一次函数y=-bx+k的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.一个三角形的三边分别是3、4、5,则它的面积是()A.6 B.12 C.7.5 D.107.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为点E,DE=1,则BC=()A. B.2 C.3 D.+28.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为的菱形,剪口与折痕所成的角的度数为()A. B.C. D.9.给出下列命题,其中假命题的个数是()①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边形;③有一个角是直角的平行四边形是矩形;④矩形、平行四边形都是轴对称图形.A.1 B.2 C.3 D.410.如图,矩形ABCD中,对角线AC,BD相交于点O,∠ADB=30°,E为BC边上一点,∠AEB=45°,CF⊥BD于F.下列结论:①BE=CD,②BF=3DF,③AE=AO,④CE=CF.正确的结论有()A.①② B.②③ C.①②④ D.①②③11.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是()A.正方形 B.矩形 C.菱形 D.梯形12.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm二、填空题(每题4分,共24分)13.如图,将Rt△ABC绕直角顶点A按顺时针方向旋转180°得△AB1C1,写出旋转后BC的对应线段_____.14.高6cm的旗杆在水平面上的影长为8cm,此时测得一建筑物的影长为28cm,则该建筑物的高为______.15.方程的根为________.16.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.17.在平面直角坐标系中,直线与轴交于点,与反比例函数在第一象限内的图像相交于点,将直线平移后与反比例函数图像在第一象限内交于点,且的面积为18,则平移后的直线解析式为__________.18.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是.三、解答题(共78分)19.(8分)如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.(1)求证:四边形AGPH是矩形;(2)在点P的运动过程中,GH的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.20.(8分)如图,已知在中,分别是的中点,连结.(1)求证:四边形是平行四边形;(2)若,求四边形的周长.21.(8分)某商城经销一款新产品,该产品的进价6元/件,售价为9元/件.工作人员对30天销售情况进行跟踪记录并绘制成图象,图中的折线OAB表示日销售量(件)与销售时间(天)之间的函数关系.(1)第18天的日销售量是件(2)求与之间的函数关系式,并写出的取值范围(3)日销售利润不低于900元的天数共有多少天?22.(10分)小东到学校参加毕业晚会演出,到学校时发现演出道具还放在家中,此时距毕业晚会开始还有25分钟,于是立即步行回家.同时,他父亲从家里出发骑自行车以他3倍的速度给他送道具,两人在途中相遇,相遇后,小东父亲立即骑自行车以原来的速度载小东返回学校.图中线段AB、OB表示相遇前(含相遇)父亲送道具、小东取道具过程中,各自离学校的路程S(米)与所用时间t分)之间的函数关系,结合图象解答下列问题.(1)求点B坐标;(2)求AB直线的解析式;(3)小东能否在毕业晚会开始前到达学校?23.(10分)阅读可以增进人们的知识也能陶治人们的情操。我们要多阅读,多阅读有营养的书。因此我校对学生的课外阅读时间进行了抽样调查,将收集的数据分成A、B、C、D、E五组进行整理,整理后的数据如下表(表中信息不完整)。图1和图2是根据整理后的数据绘制的两幅不完整的统计图.阅读时间分组统计表组别阅读时间x(h)人数AaB100CbD140Ec请结合以上信息解答下列问题(1)求a,b,c的值;(2)补全图1所对应的统计图;(3)估计全校课外阅读时间在20h以下(不含20h)的学生所占百分比.24.(10分)五一期间,某商场计划购进甲、乙两种商品,已知购进甲商品1件和乙商品3件共需240元;购进甲商品2件和乙商品1件共需130元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.25.(12分)在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的6位数密码就很有必要了.有一种用“因式分解法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=18时,x﹣1=17,x+1=19,x+2=20,此时可以得到数字密码1.(1)根据上述方法,当x=21,y=7时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(写出两个)(2)若多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本题的方法,当x=27时可以得到其中一个密码为242834,求m、n的值.26.如图,在边长为1个单位长度的小正方形组成的两个中,点都是格点.(1)将向左平移6个单位长度得到.请画出;(2)将绕点按逆时针方向旋转得到,请画出.
参考答案一、选择题(每题4分,共48分)1、A【解题分析】
连接AC、CF,如图,根据正方形的性质得∠ACD=45°,∠FCG=45°,AC=,CF=3,则∠ACF=90°,再利用勾股定理计算出AF=2,然后根据直角三角形斜边上的中线求CH的长.【题目详解】连接AC、CF,如图,∵四边形ABCD和四边形CEFG都是正方形,∴∠ACD=45°,FCG=45°,AC=BC=,CF=CE=3,∴∠ACF=45°+45°=90°,在Rt△ACF中,AF=,∵H是AF的中点,∴CH=AF=.故选A.【题目点拨】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.两条对角线将正方形分成四个全等的等腰直角三角形.也考查了直角三角形斜边上的中线性质及勾股定理.2、C【解题分析】
分式无意义则分式的分母为0,据此求得x的值即可.【题目详解】A、x=0分式无意义,不符合题意;B、x=﹣1分式无意义,不符合题意;C、x=1分式无意义,符合题意;D、x取任何实数式子有意义,不符合题意.故选C.【题目点拨】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3、A【解题分析】
由图象可知kx+b=0的解为x=−1,所以kx+b>0的解集也可观察出来.【题目详解】从图象得知一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(−1,0),并且函数值y随x的增大而增大,因而则不等式kx+b>0的解集是x>−1.故选:A.【题目点拨】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.4、B【解题分析】
根据方差的意义先比较出甲、乙、丙、丁的大小,再根据平均数的意义即可求出答案.【题目详解】∵=3.5,=3.5,=12.5,=15,∴=<<,∵=175,=173,.>,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲,故选B.【题目点拨】本题考查了平均数和方差,一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5、A【解题分析】
根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,再根据k,b的取值范围确定一次函数y=-bx+k图象在坐标平面内的位置关系,从而求解.【题目详解】解:一次函数y=kx+b过一、二、四象限,则函数值y随x的增大而减小,因而k<1;图象与y轴的正半轴相交则b>1,因而一次函数y=-bx+k的一次项系数-b<1,y随x的增大而减小,经过二四象限,常数项k<1,则函数与y轴负半轴相交,因而一定经过二三四象限,因而函数不经过第一象限.故选:A.【题目点拨】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;
一次函数y=kx+b图象与y轴的正半轴相交⇔b>1,一次函数y=kx+b图象与y轴的负半轴相交⇔b<1,一次函数y=kx+b图象过原点⇔b=1.6、A【解题分析】
由于32+42=52,易证此三角形是直角三角形,从而易求此三角形的面积.【题目详解】∵32+42=52,∴此三角形是直角三角形,∴S△=×3×4=1.故选:A.【题目点拨】本题考查了勾股定理的逆定理.解题的关键是先证明此三角形是直角三角形.7、C【解题分析】试题分析:根据角平分线的性质可得CD=DE=1,根据Rt△ADE可得AD=2DE=2,根据题意可得△ADB为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1.考点:角平分线的性质和中垂线的性质.8、C【解题分析】
折痕为AC与BD,∠BAD=100°,根据菱形的性质:菱形的对角线平分对角,可得∠ABD=40°,易得∠BAC=50°,所以剪口与折痕所成的角a的度数应为40°或50°.【题目详解】∵四边形ABCD是菱形,
∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,
∵∠BAD=100°,
∴∠ABC=180°-∠BAD=180°-100°=80°,
∴∠ABD=40°,∠BAC=50°.
∴剪口与折痕所成的角a的度数应为40°或50°.
故选:C.【题目点拨】此题考查菱形的判定,折叠问题,解题关键是熟练掌握菱形的性质:菱形的对角线平分每一组对角.9、C【解题分析】
根据平行四边形、矩形、正方形的判定以及轴对称的性质可知.【题目详解】解:①四条边相等的四边形是菱形,故原命题是假命题;②两组邻边分别相等的四边形无法确定形状,故原命题是假命题;③有一个角是直角的平行四边形是矩形,正确,故原命题是真命题;④矩形是轴对称图形,平行四边形不是轴对称图形,故原命题是假命题.故选C.【题目点拨】本题主要考查平行四边形、矩形、正方形的判定以及轴对称的性质.10、D【解题分析】
根据矩形的性质,由∠ADB=30°可得,△AOB和△COD都是等边三角形,再由∠AEB=45°,可得△ABE是等腰直角三角形,其边有特殊的关系,利用等量代换可以得出③AE=AO是正确的,①BE=CD是正确的,在正△COD中,CF⊥BD,可得DF=CD,再利用等量代换可得②BF=3DF是正确的,利用选项的排除法确定选项D是正确的.【题目详解】解:∵四边形ABCD是矩形,
∴AB=CD,AD=BC,AC=BD,AO=CO=BO=DO,∠ABC=∠ADC=∠BAD=∠BCD=90°,
∵∠AEB=45°,
∴∠BAE=∠AEB=45°
∴AB=BE=CD,AE=AB=CD,
故①正确,
∵∠ADB=30°,
∴∠ABO=60°且AO=BO,
∴△ABO是等边三角形,
∴AB=AO,
∴AE=AO,
故③正确,
∵△OCD是等边三角形,CF⊥BD,
∴DF=FO=OD=CD=BD,
∴BF=3DF,
故②正确,
根据排除法,可得选项D正确,
故选:D.【题目点拨】考查矩形的性质,含有30°角的直角三角形的特殊的边角关系、等边三角形的性质和判定等知识,排除法可以减少对④的判断,从而节省时间.11、B【解题分析】
解:∵E、F、G、H分别为各边的中点,∴EF∥AC,GH∥AC,EH∥BD,FG∥BD,(三角形的中位线平行于第三边)∴四边形EFGH是平行四边形,(两组对边分别平行的四边形是平行四边形)∵AC⊥BD,EF∥AC,EH∥BD,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形(有三个角是直角的四边形是矩形),∴∠MEN=90°,∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).12、D【解题分析】
根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长;设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,可求出r;接下来根据圆锥的母线长、底面圆的半径以及圆锥的高构成直角三角形,利用勾股定理可计算出圆锥的高.【题目详解】过O作OE⊥AB于E,如图所示.∵OA=OB=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=
OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴由勾股定理可得圆锥的高为:cm.故选D.【题目点拨】本题考查了勾股定理,扇形的弧长公式,圆锥的计算,圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.二、填空题(每题4分,共24分)13、B1C1.【解题分析】
根据旋转的性质解答即可.【题目详解】∵将Rt△ABC绕直角顶点A按顺时针方向旋转180°得△AB1C1,∴△ABC≌△AB1C1,∴BC=B1C1,∴旋转后BC的对应线段是B1C1,故答案为:B1C1.【题目点拨】本题考查了旋转的性质,熟记旋转的各种性质以及旋转的三要素是解题的关键.14、21【解题分析】【分析】设建筑物高为hm,依题意得.【题目详解】设建筑物高为hm,依题意得解得,h=21故答案为21【题目点拨】本题考核知识点:成比例性质.解题关键点:理解同一时刻,物高和影长成比例.15、【解题分析】
运用因式分解法可解得.【题目详解】由得故答案为:【题目点拨】考核知识点:因式分解法解一元二次方程.16、【解题分析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++…+1+=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.17、y=x+1或y=x﹣2【解题分析】
设反比例解析式为y=,将B坐标代入直线y=x﹣2中求出m的值,确定出B坐标,将B坐标代入反比例解析式中求出k的值,即可确定出反比例解析式;当直线向上平移时,过C作CD垂直于y轴,过B作BE垂直于y轴,设y=x﹣2平移后解析式为y=x+b,C坐标为(a,a+b),△ABC面积=梯形BEDC面积+△ABE面积﹣△ACD面积,由已知△ABC面积列出关系式,将C坐标代入反比例解析式中列出关系式,两关系式联立求出b的值,即可确定出平移后直线的解析式;当直线向下平移时,假设平移后与反比例函数图像在第一象限内交于点C',若平移的距离和向上平移的距离相同,利用△ABC与△ABC'的同底等高,便能得到且它们的面积也相同,皆为18,符合题意,进而得到结果.【题目详解】解:将B坐标代入直线y=x﹣2中得:m﹣2=2,解得:m=4,则B(4,2),即BE=4,OE=2,设反比例解析式为y=(k≠0),将B(4,2)代入反比例解析式得:k=8,则反比例解析式为y=;设平移后直线解析式为y=x+b,C(a,a+b),对于直线y=x﹣2,令x=0求出y=﹣2,得到OA=2,过C作CD⊥y轴,过B作BE⊥y轴,将C坐标代入反比例解析式得:a(a+b)=8,∵S△ABC=S梯形BCDE+S△ABE﹣S△ACD=18,∴×(a+4)×(a+b﹣2)+×(2+2)×4﹣×a×(a+b+2)=18,解得:b=1,则平移后直线解析式为y=x+1.此时直线y=x+1是由y=x﹣2向上平移9个单位得到的,同理,当直线向下平移9个单位时,直线解析式为y=x﹣2﹣9,即:y=x﹣2设此时直线与反比例函数图像在第一象限内交于点C',则此时△ABC与△ABC'是同底等高的两个三角形,所以△ABC'也是18,符合题意,故答案是:y=x+1或y=x﹣2.【题目点拨】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:一次函数与坐标轴的交点,待定系数法求函数解析式,三角形、梯形的面积求法,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.18、24【解题分析】∵小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,∴口袋中白色球的个数很可能是(1-15%-45%)×60=24个.三、解答题(共78分)19、(1)证明见解析;(2)见解析.【解题分析】
(1)根据“矩形的定义”证明结论;(2)连结AP.当AP⊥BC时AP最短,结合矩形的两对角线相等和面积法来求GH的值.【题目详解】(1)证明∵AC=9
AB=12
BC=15,∴AC2=81,AB2=144,BC2=225,∴AC2+AB2=BC2,∴∠A=90°.∵PG⊥AC,PH⊥AB,∴∠AGP=∠AHP=90°,∴四边形AGPH是矩形;(2)存在.理由如下:连结AP.∵四边形AGPH是矩形,∴GH=AP.∵当AP⊥BC时AP最短.∴9×12=15•AP.∴AP=.【题目点拨】本题考查了矩形的判定与性质.解答(2)题时,注意“矩形的对角线相等”和“面积法”的正确应用.20、(1)见解析;(2)四边形的周长为12.【解题分析】
(1)根据三角形的中位线的性质得到DF∥BC,EF∥AB,根据平行四边形的判定定理即可得到结论;
(2)根据直角三角形的性质得到DF=DB=DA=AB=3,推出四边形BEFD是菱形,于是得到结论.【题目详解】(1)∵分别是的中点,∴,∴四边形是平行四边形.(2)∵,是的中点,,∴.∴四边形是菱形.∵,∴四边形的周长为12.【题目点拨】本题考查了平行四边形的性质和判定,菱形的判定和性质,三角形的中位线的性质,熟练掌握平行四边形的性质是解题的关键.21、(1)360;(2)y=;(3)16天【解题分析】
(1)根据图象即可得到结论;(2)根据点的坐标,利用待定系数法可求出直线OA、AB的函数关系式,即可找出y与x之间的函数关系式;(3)根据日销售量=日销售利润÷每件的利润,可求出日销售量,将其分别代入OA、AB的函数关系式中求出x值,将其相减加1即可求出日销售利润不低于900元的天数.【题目详解】解:(1)由图象知,第18天的日销售量是360件;故答案为:360;(2)当时,设直线OA的函数解析式为:y=kx,把(18,360)代入得360=18k,解得:k=20,∴y=20x(0≤x≤18),当18<x≤1时,设直线AB的函数解析式为:y=mx+n,把(18,360),(1,10)代入得:,解得:,∴直线AB的函数解析式为:y=-5x+450,综上所述,y与x之间的函数关系式为:y=;(3)当0≤x≤18时,根据题意得,(9-6)×20x≥900,解得:x≥15;当18<x≤1时,根据题意得,(9-6)×(-5x+450)≥900,解得:x≤1.∴15≤x≤1;∴1-15+1=16(天),∴日销售利润不低于900元的天数共有16天.【题目点拨】本题考查了一次函数的应用,解题的关键是:根据点的坐标,利用待定系数法求出函数关系式;利用一次函数图象上点的坐标特征求出日销售利润等于900元的销售时间.22、(1)点B的坐标为(15,900);(2)s=﹣180t+310;(3)小东能在毕业晚会开始前到达学校.【解题分析】(1)由图象可知:父子俩从出发到相遇时花费了15分钟,设小东步行的速度为x米/分,则小东父亲骑车的速度为3x米/分,依题意得:15(x+3x)=310,解得:x=1.∴两人相遇处离学校的距离为1×15=900(米).∴点B的坐标为(15,900);(2)设直线AB的解析式为:s=kt+b.∵直线AB经过点A(0,310)、B(15,900)∴∴直线AB的解析式为:s=﹣180t+310;(3)解法一:小东取道具遇到父亲后,赶往学校的时间为:=5(分),∴小东从取道具到赶往学校共花费的时间为:15+5=20(分),∵20<25,∴小东能在毕业晚会开始前到达学校.解法二:在s=﹣180t+310中,令s=0,即﹣180t+310=0,解得:t=20,即小东的父亲从出发到学校花费的时间为20(分),∵20<25,∴小东能在毕业晚会开始前到达学校.23、(1)a=20,b=200,c=40;(2)详见解析;(3)估计全校课外阅读时间在20h以下的学生所占百分比为24%.【解题分析】
(1)根据D组的人数及占比可求出调查的总人数,再根据C,E组的占比求出对应的人数,再用总人数减去各组人数即可求出.(2)根据所求的数值即可补全统计图;(3)根据题意可知在20h以下(不含20h)的学生所占百分比为,故可求解.【题目详解】解:(1)由题意可知,调查的总人数为,∴,,则;(2)补全图形如下:(3)由(1)可知,答:估计全校课外阅读时间在20h以下的学生所占百分比为24%.【题目点拨】此题主要考查统计调查的应用,解题的关键是根据题意求出调查的总人数.24、(1)甲商品每件进价30元,乙商品每件进价70元;(2)甲商品进80件,乙商品进20件,最大利润是1200元.【解题分析】
(1)根据购进甲商品1件和乙商品3件共需240元,甲商品2件和乙商品1件共需130元可以列出相应的方程组,从而可以求得甲、乙两种商品每件的进价分别是多少元;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑业安全责任协议书
- 租房交换协议书
- 造假就业协议书
- 道路修补协议书
- 联防互助协议书
- 租赁模具协议书
- 房管所合同解除协议书
- 砂仁管理协议书
- 珠海市政府合作协议书
- 纸箱调价协议书
- 2025+CSCO非小细胞肺癌诊疗指南解读课件
- 医院后勤考试试题及答案
- 纺织设备电气控制技术考核试卷
- 互联网运营思维
- T∕CACM 1085-2018 中医治未病技术操作规范 调神益智针法预防血管性认知障碍
- -小学英语人称代词与物主代词讲解课件(共58张课件).课件
- (正式版)JBT 9229-2024 剪叉式升降工作平台
- 七年级英语下册阅读理解专项练习题100篇含答案
- 脑损伤病情观察意识状态的分级
- 请假通用员工请假单模板
- 八年级音乐下册 第7单元《当兵的人》好男儿就是要当兵课件1 湘教版
评论
0/150
提交评论