上海新云台中学2024届数学八年级第二学期期末教学质量检测试题含解析_第1页
上海新云台中学2024届数学八年级第二学期期末教学质量检测试题含解析_第2页
上海新云台中学2024届数学八年级第二学期期末教学质量检测试题含解析_第3页
上海新云台中学2024届数学八年级第二学期期末教学质量检测试题含解析_第4页
上海新云台中学2024届数学八年级第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海新云台中学2024届数学八年级第二学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.2.下列各式中,与3是同类二次根式的是()A.6 B.12 C.15 D.183.如图,在梯形ABCD中,AB∥CD,中位线EF与对角线AC、BD交于M、N两点,若EF=18cm,MN=8cm,则AB的长等于()cmA.10 B.13 C.20 D.264.如图,AB∥CD∥EF,AC=4,CE=6,BD=3,则DF的值是().A.4.5 B.5 C.2 D.1.55.已知关于的一元二次方程有一个根是,那么的值是()A. B. C. D.6.下列条件中能构成直角三角形的是().A.2、3、4 B.3、4、5 C.4、5、6 D.5、6、77.如图,菱形中,,与交于,为延长线上的一点,且,连结分别交,于点,,连结则下列结论:①;②与全等的三角形共有个;③;④由点,,,构成的四边形是菱形.其中正确的是()A.①④ B.①③④ C.①②③ D.②③④8.有一组数据a=-10,b=0,c=11,d=17,e=17,f=31,若去掉c,下列叙述正确的是()A.只对平均数有影响 B.只对众数有影响C.只对中位数有影响 D.对平均数、中位数都有影响9.如果把分式中的x和y都扩大2倍,那么分式的值()A.扩大为原来的4倍 B.扩大为原来的2倍C.不变 D.缩小为原来的倍10.关于频率与概率有下列几种说法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确的说法是()A.②④ B.②③ C.①④ D.①③11.下列四边形中,是中心对称而不是轴对称图形的是()A.平行四边形 B.矩形 C.菱形 D.正方形12.下列图案中是轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,正比例函数y=ax的图象与反比例函数y=kx的图象相交于点A,B,若点A的坐标为(-2,3),则点B的坐标为_________14.在,,,,中任意取一个数,取到无理数的概率是___________.15.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是_____边形.16.已知一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是___________.17.若菱形的周长为14cm,一个内角为60°,则菱形的面积为_____cm1.18.在中,,,,_______.三、解答题(共78分)19.(8分)如图,在矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,求CF的长.20.(8分)在▱ABCD中,对角线AC,BD相交于点O.EF过点O且与ABCD分别相交于点E,F(1)如图①,求证:OE=OF;(2)如图②,若EF⊥DB,垂足为O,求证:四边形BEDF是菱形.21.(8分)(1)把下面的证明补充完整已知:如图,直线AB、CD被直线EF所截,AB∥CD,EG平分∠BEF,FG平分∠DFE,EG、FG交于点G.求证:EG⊥FG.证明:∵AB∥CD(已知)∴∠BEF+∠DFE=180°(______),∵EG平分∠BEF,FG平分∠DFE(已知),∴______,______(______),∴∠GEF+∠GFE=(∠BEF+∠DFE)(______),∴∠GEF+∠GFE=×180°=90°(______),在△EGF中,∠GEF+∠GFE+∠G=180°(______),∴∠G=180°-90°=90°(等式性质),∴EG⊥FG(______).(2)请用文字语言写出(1)所证命题:______.22.(10分)暑假期间,两名教师计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家旅行社经协商,甲旅行社的优惠条件是:两名教师全额收费,学生都按七折收费;乙旅行社的优惠条件是:教师、学生都按八折收费请你帮他们选择一下,选哪家旅行社比较合算.23.(10分)我们将(a+b)、(a-b)称为一对“对偶式”,因为(a+b(1)比较大小17-2________16-3(用“>(2)已知x=5+25-2,(3)计算:224.(10分)某种商品的定价为每件20元,商场为了促销,决定如果购买5件以上,则超过5件的部分打7折.(1)求购买这种商品的货款y(元)与购买数量x(件)之间的函数关系;(2)当x=3,x=6时,货款分别为多少元?25.(12分)在平面直角坐标系中,过一点分别作x轴,y轴的垂线,如果由这点、原点及两个垂足为顶点的矩形的周长与面积相等,那么称这个点是平面直角坐标系中的“巧点”.例如,图1中过点P(4,4)分別作x轴,y轴的垂线,垂足为A,B,矩形OAPB的周长为16,面积也为16,周长与面积相等,所以点P是巧点.请根据以上材料回答下列问题:(1)已知点C(1,3),D(-4,-4),E(5,-),其中是平面直角坐标系中的巧点的是______;(2)已知巧点M(m,10)(m>0)在双曲线y=(k为常数)上,求m,k的值;(3)已知点N为巧点,且在直线y=x+3上,求所有满足条件的N点坐标.26.如图,把两个大小相同的含有45º角的直角三角板按图中方式放置,其中一个三角板的锐角顶点与另一个三角板的直角顶点重合于点A,且B,C,D在同一条直线上,若AB=2,求CD的长.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】

根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【题目详解】解:A.是轴对称图形,但不是中心对称图形,故不符合题意;B.不是轴对称图形,是中心对称图形,故不符合题意;C.是轴对称图形,但不是中心对称图形,故不符合题意;D.既是轴对称图形又是中心对称图形,故符合题意.故选D.【题目点拨】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.2、B【解题分析】

先化简二次根式,再根据同类二次根式的定义判定即可.【题目详解】解:A、6与3的被开方数不同,不是同类二次根式,故本选项错误.

B、12=23,与3的被开方数相同,是同类二次根式,故本选项正确.

C、15与3的被开方数不同,不是同类二次根式,故本选项错误.

D、18=32,与3的被开方数不同,不是同类二次根式,故本选项错误.

故选:B.【题目点拨】本题考查同类二次根式,解题的关键是二次根式的化简.3、D【解题分析】分析:首先根据梯形中位线的性质得出AB+CD=36cm,根据MN的长度以及三角形中位线的性质得出EM=FN=5cm,从而得出CD=10cm,然后得出答案.详解:∵EF=,∴AB+CD=36cm,∵MN=8cm,EF=18cm,∴EM+FN=10cm,∴EM=FN=5cm,根据三角形中位线的性质可得:CD=2EM=10cm,∴AB=36-10=26cm,故选D.点睛:本题主要考查的是梯形中位线以及三角形中位线的性质,属于基础题型.明确中位线的性质是解决这个问题的关键.4、A【解题分析】

直接根据平行线分线段成比例定理即可得出结论.【题目详解】∵直线AB∥CD∥EF,AC=4,CE=6,BD=3,∴ACCE=BDDF,即故选A.【题目点拨】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.5、C【解题分析】

根据一元二次方程的解的定义,将x=-1代入关于x的一元二次方程x1+3x+a=0,列出关于a的一元一次方程,通过解方程即可求得a的值.【题目详解】根据题意知,x=-1是关于x的一元二次方程x1+3x+a=0的根,

∴(-1)1+3×(-1)+a=0,即-1+a=0,

解得,a=1.

故选:C.【题目点拨】本题考查了一元二次方程的解的定义.一元二次方程的解使方程的左右两边相等.6、B【解题分析】

根据勾股定理逆定理进行计算判断即可.【题目详解】A.,故不能构成直角三角形;B.,故能构成直角三角形;C.,故不能构成直角三角形;D.,故不能构成直角三角形.故选:B.【题目点拨】本题考查勾股定理的逆定理,熟记定理是关键,属于基础题型.7、A【解题分析】

连结,可说明四边形是平行四边形,即是的中点;由有题意的可得O是BD的中点,即可判定①;运用菱形和平行四边形的性质寻找判定全等三角形的条件,找出与其全等的三角形即可判定②;证出OG是△ABD的中位线,得出OG//AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形0DGF=S△ABF.即可判定③;先说明△ABD是等边三角形,则BD=AB,即可判定④.【题目详解】解:如图:连结.,,四边形是平行四边形,是的中点,∵O是BD的中点,①正确;有,,,,,,共个,②错误;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG//AB,OG=AB,∴△GOD∽△ABD,△ABF∽△OGF,∵△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△A0G的面积=△B0G的面积,.∴;不正确;③错误;是等边三角形.,是菱形,④正确.故答案为A.【题目点拨】本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;考查知识点较多、难道较大,解题的关键在于对所学知识的灵活应用.8、C【解题分析】

分别计算出去掉c前后的平均数,中位数和众数,进行比较即可得出答案.【题目详解】去掉c之前:平均数为:,中位数是,众数是17;去掉c之后:平均数为:,中位数是,众数是17;通过对比发现,去掉c,只对中位数有影响,故选:C.【题目点拨】本题主要考查平均数,中位数和众数,掌握平均数,中位数和众数的求法是解题的关键.9、B【解题分析】

依题意,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可;【题目详解】解:分别用2x和2y去代换原分式中的x和y得,,可见新分式扩大为原来的2倍,故选B.【题目点拨】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.10、C【解题分析】

分别利用概率的意义分析得出答案.【题目详解】①“明天下雨的概率是90%”表示明天下雨的可能性很大;正确;

②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;错误;

③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;错误;

④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确.

故选C.【题目点拨】此题主要考查了概率的意义,正确理解概率的意义是解题关键.11、A【解题分析】【分析】根据理解中心对称图形和轴对称图形定义,可以判断.【题目详解】平行四边形是中心对称图形,不是轴对称图形;矩形是中心对称图形,也是轴对称图形;菱形是中心对称图形,也是轴对称图形;正方形是中心对称图形,也是轴对称图形.只有选项A符合条件.故选A【题目点拨】本题考核知识点:中心对称图形和轴对称图形.解题关键点:理解中心对称图形和轴对称图形定义.12、D【解题分析】

根据轴对称图形的概念求解即可.【题目详解】A、不是轴对称图形,故此选项错误;

B、不是轴对称图形,故此选项错误;

C、不是轴对称图形,故此选项错误;

D、是轴对称图形,故此选项正确.

故选:D.【题目点拨】本题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题(每题4分,共24分)13、(2,﹣3)【解题分析】试题分析:反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.解:根据题意,知点A与B关于原点对称,∵点A的坐标是(﹣2,3),∴B点的坐标为(2,﹣3).故答案是:(2,﹣3).点评:本题考查了反比例函数图象的中心对称性,关于原点对称的两点的横、纵坐标分别互为相反数.14、【解题分析】

直接利用无理数的定义得出无理数的个数,再利用概率公式求出答案.【题目详解】解:∵在,,,,中无理数只有这1个数,∴任取一个数,取到无理数的概率是,故答案为:.【题目点拨】此题主要考查了概率公式以及无理数,正确把握无理数的定义是解题关键.15、六【解题分析】

n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.【题目详解】设多边形的边数为n,依题意,得:(n﹣2)•180°=2×360°,解得n=6,故答案为:六.【题目点拨】本题考查了多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.16、4.1【解题分析】

分别假设众数为1、1、7,分类讨论、找到符合题意得x的值,再根据平均数的定义求解可得.【题目详解】若众数为1,则数据为1、1、1、7,此时中位数为3,不符合题意;若众数为1,则数据为1、1、1、7,中位数为1,符合题意,此时平均数为=4.1;若众数为7,则数据为1、1、7、7,中位数为6,不符合题意;故答案为:4.1.【题目点拨】本题主要考查众数、中位数及平均数,根据众数的可能情况分类讨论求解是解题的关键.17、18【解题分析】

根据已知可求得菱形的边长,再根据直角三角形的性质求得菱形的高,从而根据菱形的面积公式计算得到其面积【题目详解】解:菱形的周长为14cm,则边长为6cm,可求得60°所对的高为×6=3cm,则菱形的面积为6×3=18cm1.故答案为18.【题目点拨】此题主要考查菱形的面积公式:边长乘以高,综合利用菱形的性质和勾股定理18、1【解题分析】

根据10°所对的直角边等于斜边的一半求解.【题目详解】解:∵∠C=90°,∠A=10°,BC=,∴AB=2BC=1.故答案为:1.【题目点拨】本题考查含10°角的直角三角形的性质,熟练掌握直角三角形的性质是解题的关键.三、解答题(共78分)19、.【解题分析】

证△AEF≌△ADF,推出AE=AD=5,EF=DF,在△ABE中,由勾股定理求出BE=3,求出CE=2,设CF=x,则EF=DF=4﹣x,在Rt△CFE中,由勾股定理得出方程(4﹣x)2=x2+22,求出x即可.【题目详解】∵AF平分∠DAE,∴∠DAF=∠EAF,∵四边形ABCD是矩形,∴∠D=∠C=90°,AD=BC=5,AB=CD=4,∵EF⊥AE,∴∠AEF=∠D=90°,在△AEF和△ADF中,,∴△AEF≌△ADF(AAS),∴AE=AD=5,EF=DF,在△ABE中,∠B=90°,AE=5,AB=4,由勾股定理得:BE=3,∴CE=5﹣3=2,设CF=x,则EF=DF=4﹣x,在Rt△CFE中,由勾股定理得:EF2=CE2+CF2,∴(4﹣x)2=x2+22,x=,CF=.【题目点拨】本题考查了矩形的性质,全等三角形的性质和判定,角平分线性质,勾股定理等知识点,主要考查学生推理和计算能力,用了方程思想.20、(1)证明见解析;(2)证明见解析.【解题分析】

(1)由四边形ABCD是平行四边形,得到OB=OD,AB∥CD,根据全等三角形的性质即可得到结论;(2)根据对角线互相平分的四边形是平行四边形先判定四边形BEDF是平行四边形,继而根据对角线互相垂直的平行四边形是菱形即可得结论.【题目详解】(1)∵四边形ABCD是平行四边形,∴OB=OD,AB∥CD,∴∠EBO=∠FDO,在△OBE与△ODF中,,∴△OBE≌△ODF(ASA),∴OE=OF;(2)∵OB=OD,OE=OF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴平行四边形BEDF是菱形.【题目点拨】本题考查了菱形的判定,平行四边形的性质以及全等三角形的判定与性质.注意掌握数形结合思想的应用.21、(1)见解析;(2)两条平行线被第三条直线所截,同旁内角的平分线互相垂直【解题分析】

(1)先根据AB∥CD求出∠BEF与∠DFE的关系,再由角平分线的性质求出∠FEG+∠EFG的度数,然后由三角形内角和定理即可求出∠EGF的度数,进而可得结论;(2)根据(1)的结论写出所证命题即可.【题目详解】(1)证明:∵AB∥CD(已知),∴∠BEF+∠DFE=180°(两直线平行,同旁内角互补),∵EG平分∠BEF,FG平分∠DFE(已知),∴∠GEF=∠BEF,∠GFE=∠DFE(角平分线的定义),∴∠GEF+∠GFE=(∠BEF+∠DFE)(等式的性质),∴∠GEF+∠GFE=×180°=90°(等量代换),在△EGF中,∠GEF+∠GFE+∠G=180°(三角形的内角和定理),∴∠G=180°-90°=90°(等式性质),∴EG⊥FG(垂直的定义);(2)用文字语言可表示为:两条平行线被第三条直线所截,同旁内角的平分线互相垂直.故答案为:两条平行线被第三条直线所截,同旁内角的平分线互相垂直.【题目点拨】本题考查的是平行线的性质、角平分线的性质和三角形内角和定理,属于基础题型,熟练掌握上述基本知识是解题关键.22、当两名家长带领的学生少于4人时,应该选择乙旅行社;当两名家长带领的学生为4人时,选择甲、乙两家旅行社都一样;当两名家长带领的学生多于4人时,应该选择甲旅行社.

【解题分析】

(1)根据甲旅行社的收费=两名家长的全额费用+学生的七折费用,可得到y1与x的函数关系式;再根据乙旅行社的收费=两名家长的八折费用+学生的八折费用,可得到y2与x的函数关系式;

(2)首先分三种情况讨论:①y1>y2,②y1=y2,③y1<y2,针对每一种情况,分别求出对应的x的取值范围,然后比较哪种情况下选谁更合适,即可判断选择哪家旅行社.解答:【题目详解】解:设x名学生,则在甲旅行社花费:y1=,在乙旅行社的花费:y2=,当在乙旅行社的花费少时:y1>y2,解得;在两家花费相同时:y1=y2,解得;当在甲旅行社的花费少时:y1<y2,解得.综上,可得当两名家长带领的学生少于4人时,应该选择乙旅行社;当两名家长带领的学生为4人时,选择甲、乙两家旅行社都一样;当两名家长带领的学生多于4人时,应该选择甲旅行社.【题目点拨】本题考查了一次函数的应用:根据题意列出一次函数关系式y=kx+b(k≠0),然后比较函数值的大小得到对应的x的取值范围,从而确定省钱的方案.23、(1)>;(2)x2+y2【解题分析】

(1)先利用分母有理化的方法化简,再比较分子即可;(2)利用x2+y2=(x+y)2﹣2xy变形计算较为简单;(3)先把各个式子进行分母有理化,再裂项相消即可.【题目详解】(1)∵17-216比较7+2与∵7>6,2>3,∴7+2>6+3,∴17-2〉(2)∵x2+y2=(x+y)2﹣2xy=(5+25-2+5=182﹣2=324﹣2=1答:x2+y2的值为1.(3)2=2(3-3)(3+3)(3-3)+2(53-35)(53+35)(5=1﹣99=99-【题目点拨】考查二次根式的化简求值,同时考查了完全平方公式的变形应用以及裂项法的应用,计算量较大.24、(1)y=(2)114【解题分析】试题分析:(1)根据题目条件:如果购买5件以上,则超过5件的部分打7折即可得到y

(元)与购买数量x

(件)之间的函数关系;

(2)把x=3,x=6分别代入(1)中的函数关系式即可求出贷款数.试题解析:(1)根据商场的规定,当0<x≤5时,y=20x,当x>5时,y=20×5+(x﹣5)×20×0.7=100+14(x﹣5),所以,货款y(元)与购买数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论