




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省大丰市万盈初级中学2024届数学八年级第二学期期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的()A.方差 B.众数 C.平均数 D.中位数2.如图,在中,,是的中点,,,若,,①四边形是平行四边形;②是等腰三角形;③四边形的周长是;④四边形的面积是1.则以上结论正确的是A.①②③ B.①②④ C.①③④ D.②④3.代数式在实数范围内有意义,实数取值范围是()A. B. C. D.4.若关于的一元二次方程的一个根是1,则的值为()A.-2 B.1 C.2 D.05.直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2D.y=2x+26.若,若,则的度数是()A. B. C. D.7.分式有意义的条件是()A. B. C.且 D.或8.如图,矩形中,,,、分别是边、上的点,且与之间的距离为4,则的长为()A.3 B. C. D.9.在RtABC中,∠C90,AB3,AC2,则BC的值()A. B. C. D.10.下列事件中,属于必然事件的是A.如果都是实数,那么B.同时抛掷两枚质地均匀的骰子,向上一面的点数之和为13C.抛一枚质地均匀的硬币20次,有10次正面向上D.用长为4cm,4cm,9cm的三条线段围成一个等腰三角形11.已知点A、B的坐标分别为(2,5),(﹣4,﹣3),则线段AB的长为()A.9 B.10 C.11 D.1212.下列说法:①对角线互相垂直的四边形是菱形;②矩形的对角线垂直且互相平分;③对角线相等的四边形是矩形;④对角线相等的菱形是正方形;⑤邻边相等的矩形是正方形.其中正确的是()A.个 B.个 C.个 D.个二、填空题(每题4分,共24分)13.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是________分.14.用反证法证明“等腰三角形的底角是锐角”时,首先应假设_____15.若二次根式有意义,则的取值范围是______.16.已知54-1能被20~30之间的两个整数整除,则这两个整数是_________.17.要使二次根式有意义,则的取值范围是________.18.如图,在平面直角坐标系中,点A、B的坐标分别为(﹣5,0)、(﹣2,0).点P在抛物线y=﹣2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,△PAB的面积S的取值范围是_____.三、解答题(共78分)19.(8分)学校为了更新体育器材,计划购买足球和篮球共100个,经市场调查:购买2个足球和5个篮球共需600元;购买3个足球和1个篮球共需380元。(1)请分别求出足球和篮球的单价;(2)学校去采购时恰逢商场做促销活动,所有商品打九折,并且学校要求购买足球的数量不少于篮球数量的3倍,设购买足球a个,购买费用W元。①写出W关于a的函数关系式,②设计一种实际购买费用最少的方案,并求出最少费用。20.(8分)某同学参加“希望之星”英语口语大赛,7名评委给该同学的打分(单位:分)情况如下表:评委评委1评委2评委3评委4评委5评委6评委7打分9.29.49.39.49.19.39.4(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数.21.(8分)已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0(1)求证:无论k取何值,这个方程总有实数根;(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.22.(10分)《北京中小学语文学科教学21条改进意见》中的第三条指出:“在教学中重视对国学经典文化的学习,重视历史文化的熏陶,加强与革命传统教育的结合,使学生了解中华文化的悠久历史,增强民族文化自信和价值观自信,使语文教学成为涵养社会主义核心价值观的重要源泉之一”.为此,昌平区掀起了以“阅读经典作品,提升思维品质”为主题的读书活动热潮,在一个月的活动中随机调查了某校初二年级学生的周人均阅读时间的情况,整理并绘制了如下的统计图表:某校初二年级学生周人均阅读时间频数分布表周人均阅读时间x(小时)频数频率0≤x<2100.0252≤x<4600.1504≤x<6a0.2006≤x<81100.2758≤x<101000.25010≤x<1240b合计4001.000请根据以上信息,解答下列问题:(1)在频数分布表中a=______,b=______;(2)补全频数分布直方图;(3)若该校有1600名学生,根据调查数据请你估计,该校学生周人均阅读时间不少于6小时的学生大约有______人.23.(10分)如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数。(2)若AC=2,求AD的长。24.(10分)如图,在中,,cm,cm,在中,,cm,cm.EF在BC上,保持不动,并将以1cm/s的速度向点C运动,移动开始前点F与点B重合,当点E与点C重合时,停止移动.边DE与AB相交于点G,连接FG,设移动时间为t(s).(1)从移动开始到停止,所用时间为________s;(2)当DE平分AB时,求t的值;(3)当为等腰三角形时,求t的值.25.(12分)解不等式组:.26.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?
参考答案一、选择题(每题4分,共48分)1、D【解题分析】
由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【题目详解】共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选D.【题目点拨】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.2、A【解题分析】
证明AC∥DE,再由条件CE∥AD可证明四边形ACED是平行四边形;根据线段的垂直平分线证明AE=EB可得△BCE是等腰三角形;首先利用三角函数计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2,利用△ACB和△CBE的面积和可得四边形ACEB的面积.【题目详解】①,,,,,四边形是平行四边形,故①正确;②是的中点,,,是等腰三角形,故②正确;③,,,,四边形是平行四边形,,,,,,,四边形的周长是故③正确;④四边形的面积:,故④错误,故选.【题目点拨】此题主要考查了平行四边形的判定和性质,以及三角函数的应用,关键是利用三角函数值计算出CB长.3、A【解题分析】
根据分数有意义的条件和二次根式有意义的条件,得出不等式,求解即可.【题目详解】由题意得,解得x>2,故选:A.【题目点拨】本题考查了分数有意义的条件和二次根式有意义的条件,掌握知识点是解题关键.4、C【解题分析】
根据方程的解的定义,把x=1代入方程,即可得到关于a的方程,再求解即可.【题目详解】解:根据题意得:1-3+a=0
解得:a=1.
故选C.【题目点拨】本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.5、C【解题分析】
据一次函数图象与几何变换得到直线y=1x向下平移1个单位得到的函数解析式为y=1x﹣1.【题目详解】直线y=1x向下平移1个单位得到的函数解析式为y=1x﹣1.故选:C.【题目点拨】本题考查了一次函数图象与几何变换:一次函数y=kx(k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+m.6、A【解题分析】
根据相似三角形的对应角相等可得∠D=∠A.【题目详解】∵△ABC∽△DEF,∠A=50°,
∴∠D=∠A=50°.
故选:A.【题目点拨】此题考查相似三角形的性质,熟记相似三角形的对应角相等是解题的关键.7、B【解题分析】
根据分式有意义的条件即可求出答案.【题目详解】解:由题意可知:x-2≠0,∴x≠2故选:B.【题目点拨】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.8、D【解题分析】
过点D作DG⊥BE,垂足为G,则GD=4=AB,∠G=90°,再利用AAS证明△AEB≌△GED,根据全等三角形的性质可得AE=EG.设AE=EG=x,则ED=5﹣x,在Rt△DEG中,由勾股定理得可得方程x2+42=(5﹣x)2,解方程求得x的值即可得AE的长.【题目详解】过点D作DG⊥BE,垂足为G,如图所示:则GD=4=AB,∠G=90°,∵四边形ABCD是矩形,∴AD=BC=5,∠A=90°=∠G,在△AEB和△GED中,∴△AEB≌△GED(AAS).∴AE=EG.设AE=EG=x,则ED=5﹣x,在Rt△DEG中,由勾股定理得:ED2=EG2+GD2,∴x2+42=(5﹣x)2,解得:x=,即AE=.故选D.【题目点拨】本题考查了矩形的性质、全等三角形的判定与性质及勾股定理,正确作出辅助线,证明AE=EG是解决问题的关键.9、A【解题分析】
根据勾股定理即可求出.【题目详解】由勾股定理得,.故选.【题目点拨】本题考查的是勾股定理,掌握勾股定理是解题的关键.10、A【解题分析】
根据事件发生的可能性大小判断相应事件的类型即可。【题目详解】A.如果a,b都是实数,那么a+b=b+a,是必然事件;B、同时抛掷两枚骰子,向上一面的点数之和为13,是不可能事件;C、抛一枚质地均匀的硬币20次,有10次正面向上,是随机事件;D、用长为4cm,4cm,9cm的三条线段围成一个等腰三角形,是不可能事件;故选:A【题目点拨】此题考查必然事件,难度不大11、B【解题分析】
根据两点间的距离公式即可得到结论.【题目详解】∵点A、B的坐标分别为(2,5),(-4,-3),∴AB==10,故选B.【题目点拨】本题考查了坐标与图形性质,两点间的距离公式,熟练掌握两点间的距离公式是解题的关键.12、B【解题分析】
利用正方形的判定和性质,菱形的判定和性质,矩形的判定和性质进行依次判断可求解.【题目详解】解:①对角线互相垂直的四边形不一定是菱形,故①错误;
②矩形的对角线相等且互相平分,故②错误;
③对角线相等的四边形不一定是矩形,故③错误;
④对角线相等的菱形是正方形,故④正确,
⑤邻边相等的矩形是正方形,故⑤正确
故选B.【题目点拨】本题考查了正方形的判定和性质,菱形的判定和性质,矩形的判定和性质,灵活运用这些性质和判定解决问题是本题的关键.二、填空题(每题4分,共24分)13、79【解题分析】
解:本学期数学总评分=70×30%+80×30%+85×40%=79(分)故答案为7914、等腰三角形的底角是钝角或直角【解题分析】根据反证法的第一步:假设结论不成立设,可以假设“等腰三角形的两底都是直角或钝角”.
故答案是:等腰三角形的两底都是直角或钝角.15、【解题分析】
根据二次根式有意义的条件即可求解.【题目详解】依题意得a+1≥0,解得故填:【题目点拨】此题主要考查二次根式的定义,解题的关键是熟知被开方数为非负数.16、24,26【解题分析】
将54-1利用分解因式的知识进行分解,再结合题目54-1能被20至30之间的两个整数整除即可得出答案.【题目详解】54−1=(5+1)(5−1)∵54−1能被20至30之间的两个整数整除,∴可得:5+1=26,5−1=24.故答案为:24,26【题目点拨】此题考查因式分解的应用,解题关键在于掌握运算法则17、x≥1【解题分析】
根据二次根式被开方数为非负数进行求解.【题目详解】由题意知,,解得,x≥1,故答案为:x≥1.【题目点拨】本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.18、3≤S≤1.【解题分析】
根据坐标先求AB的长,所以△PAB的面积S的大小取决于P的纵坐标的大小,因此只要讨论当0≤m≤3时,P的纵坐标的最大值和最小值即可,根据顶点坐标D(1,4),由对称性可知:x=1时,P的纵坐标最大,此时△PAB的面积S最大;当x=3时,P的纵坐标最小,此时△PAB的面积S最小.【题目详解】∵点A、B的坐标分别为(-5,0)、(-2,0),∴AB=3,y=-2x2+4x+8=-2(x-1)2+10,∴顶点D(1,10),由图象得:当0≤x≤1时,y随x的增大而增大,当1≤x≤3时,y随x的增大而减小,∴当x=3时,即m=3,P的纵坐标最小,y=-2(3-1)2+10=2,此时S△PAB=×2AB=×2×3=3,当x=1时,即m=1,P的纵坐标最大是10,此时S△PAB=×10AB=×10×3=1,∴当0≤m≤3时,△PAB的面积S的取值范围是3≤S≤1;故答案为3≤S≤1.【题目点拨】本题考查了二次函数的增减性和对称性,及图形和坐标特点、三角形的面积,根据P的纵坐标确定△PAB的面积S的最大值和最小值是本题的关键.三、解答题(共78分)19、(1)足球每个100元,篮球每个80元;(2)①W=18a+7200;②足球75个,篮球25个,费用最低,最低费用为8550元【解题分析】
(1)根据“购买金额=足球数量×足球单价+篮球的数量×篮球单价”,在两种情况下分别列方程,组成方程组,解方程组即可;(2)①设购买足球a个,则购买篮球的数量为(100-a)个,则总费用(W)=足球数量×足球单价×0.9+篮球的数量×篮球单价×0.9,据此列函数式整理化简即可;②
根据购买足球的数量不少于篮球数量的3倍,
且足球的数量不超过总数100,分别列一元一次不等式,组成不等式组,解不等式组求出a的范围;由于W和a的一次函数,k=18>0,W随a增大而增大,随a的减小而减小,所以当a取最小值a时,W值也为最小,从而求出W的最小值,即最低费用.【题目详解】(1)解:设足球每个x元,篮球每个y元,由题意得解得:答:足球每个100元,篮球每个80元(2)解:①W=100×0.9a+80×0.9(100-a)=18a+7200,答:W关于a的函数关系式为W=18a+7200,②由题意得
,解得:75≤a≤100∵W=18a+7200,W随a的增大而增大,∴a=75时,W最小=18×75+7200=8550元,此时,足球75个,篮球25个,费用最低,最低费用为8550元.【题目点拨】此题主要考查一次函数的应用,解题的关键是根据题意求出函数关系式,熟知一次函数的图像与性质.20、(1)众数9.4,中位数9.1;(2)平均数9.1.【解题分析】
(1)根据众数与中位数的定义求解即可;(2)根据平均数的定义求解即可.【题目详解】(1)从小到大排列此数据为:9.1,9.2,9.1,9.1,9.4,9.4,9.4,数据9.4出现了三次,最多,为众数,9.1处在第4位为中位数;(2)该同学所得分数的平均数为(9.1+9.2+9.1×2+9.4×1)÷7=9.1.【题目点拨】本题考查了平均数、众数与中位数,用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷个数.21、(1)证明见解析;(2)2.【解题分析】试题分析:(1)先把方程化为一般式:x2﹣(2k+1)x+4k﹣2=0,要证明无论k取任何实数,方程总有两实数根,即要证明△≥0;(2)先利用因式分解法求出两根:x1=2,x2=2k﹣1.先分类讨论:若a=4为底边;若a=4为腰,分别确定b,c的值,求出三角形的周长.试题解析:(1)证明:方程化为一般形式为:x2﹣(2k+1)x+4k﹣2=0,∵△=(2k+1)2﹣4(4k﹣2)=(2k﹣3)2,而(2k﹣3)2≥0,∴△≥0,所以无论k取任何实数,方程总有两个实数根;(2)解:x2﹣(2k+1)x+4k﹣2=0,整理得(x﹣2)[x﹣(2k﹣1)]=0,∴x1=2,x2=2k﹣1,当a=4为等腰△ABC的底边,则有b=c,因为b、c恰是这个方程的两根,则2=2k﹣1,解得k=,则三角形的三边长分别为:2,2,4,∵2+2=4,这不满足三角形三边的关系,舍去;当a=4为等腰△ABC的腰,因为b、c恰是这个方程的两根,所以只能2k﹣1=4,则三角形三边长分别为:2,4,4,此时三角形的周长为2+4+4=2.所以△ABC的周长为2.22、(1)80,0.100;(2)见解析;(3)1.【解题分析】
(1)总人数乘以0.2,即可得到a,40除以总人数,即可得到b;(2)根据(1)中的计算结果和表中信息,补全频数分布直方图,即可;(3)学校总人数×周人均阅读时间不少于6小时的学生的百分比,即可求解.【题目详解】(1)a=400×0.200=80,b=40÷400=0.100;故答案为:80,0.100;(2)补全频数分布直方图,如图所示:(3)1600×=1(人),答:该校学生周人均阅读时间不少于6小时的学生大约有1人,故答案为:1.【题目点拨】本题主要考查频数分布直方图、频数分布表,掌握频数分布直方图、频数分布表的特征,把它们的数据结合起来,是解题的关键.23、(1)∠BAC=75°(2)AD=.【解题分析】试题分析:(1)根据三角形内角和定理,即可推出∠BAC的度数;(2)由题意可知AD=DC,根据勾股定理,即可推出AD的长度.(1)∠BAC=180°-60°-45°=75°;(2)∵AD⊥BC,∴△ADC是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC,∵AC=2,考点:本题主要考查勾股定理、三角形内角和定理点评:解答本题的关键是根据三角形内角和定理推出AD=DC.24、(1)6;(2);(3)t=,4,6【解题分析】
(1)直接用行程问题的数量关系计算可得;(2)连接AE,证明DE是AB的垂直平分线,然后Rt中,由勾股定理得:即,解方程即可得出t的值;(3)分三种情况讨论等腰三角形的情况,利用平行线分线段成比例定理和勾股定理可得列出方程,求出HG的值并进一步得到BF的值,从而得出t的值。【题目详解】解:(1)如图1∵BC=12cm,EF=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度广东省新型城镇化背景下住宅租赁合同
- 2025年度幼儿园装修工程保修服务协议
- 2025年度按揭房屋转让与贷款利率调整协议
- 2025年度养猪场养殖废弃物处理设施运营管理合同
- 2025年度户口分家及遗产继承协议书模板
- 2025年度海洋资源资产托管与可持续发展服务协议
- 2025年度山林流转与生态农业开发合同
- 2025年度商业地产合租运营管理服务协议
- 办公家具运输简易合同
- 2025年度房地产合伙人股权分配与项目开发协议
- 文件袋、档案袋密封条模板
- 依图科技业务概述
- 支气管镜室工作制度
- 紫精丹_圣惠卷九十五_方剂加减变化汇总
- 船模制作教程(课堂PPT)课件(PPT 85页)
- 防腐检查培训教材ppt课件
- 天蓝色商务发展历程时间轴PPT模板课件
- 第5章液相传质步骤动力学
- GJB 国军标标准对应名称解析
- 肺炎链球菌肺炎医学PPT课件
- 小学英语微课ppt
评论
0/150
提交评论