版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省孝感市孝昌县数学八下期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.甲乙两城市相距600千米,一辆货车和一辆客车均从甲城市出发匀速行驶至乙城市.已知货车出发1小时后客车再出发,先到终点的车辆原地休息.在汽车行驶过程中,设两车之间的距离为s(千米),客车出发的时间为t(小时),它们之间的关系如图所示,则下列结论错误的是()A.货车的速度是60千米/小时B.离开出发地后,两车第一次相遇时,距离出发地150千米C.货车从出发地到终点共用时7小时D.客车到达终点时,两车相距180千米2.要使式子3-x有意义,则x的取值范围是()A.x>0 B.x≥﹣3 C.x≥3 D.x≤33.要使二次根式有意义,则x应满足A. B. C. D.4.若,则的值为()A.14 B.16 C.18 D.205.菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.12 B.14 C.16 D.246.下列方程有两个相等的实数根的是()A. B.C. D.7.小军自制的匀速直线运动遥控车模型甲、乙两车同时分别从、出发,沿直线轨道同时到达处,已知乙的速度是甲的速度的1.5倍,甲、乙两遥控车与处的距离、(米)与时间(分钟)的函数关系如图所示,则下列结论中:①的距离为120米;②乙的速度为60米/分;③的值为;④若甲、乙两遥控车的距离不少于10米时,两车信号不会产生互相干扰,则两车信号不会产生互相干扰的的取值范围是,其中正确的有()个A.1 B.2 C.3 D.48.在平行四边形ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.12 B.11 C.10 D.79.下列各组数据中,能作为直角三角形三边长的是()A.4,5,6 B.5,12,13 C.6,7,8 D.8,9,1010.下列多项式中,分解因式不正确的是()A.a2+2ab=a(a+2b) B.a2-b2=(a+b)(a-b)C.a2+b2=(a+b)2 D.4a2+4ab+b2=(2a+b)211.下列调查中,适宜采用普查方式的是()A.调查全国中学生心理健康现状B.调查一片试验田里五种大麦的穗长情况C.要查冷饮市场上冰淇淋的质量情况D.调查你所在班级的每一个同学所穿鞋子的尺码情况12.数据2,3,3,5,6,10,13的中位数为()A.5 B.4 C.3 D.6二、填空题(每题4分,共24分)13.如图,在四边形ABCD中,对角线AC、BD互相垂直平分,若使四边形ABCD是正方形,则需要再添加的一个条件为___________.(图形中不再添加辅助线,写出一个条件即可)14.将一根长为15cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是_____.15.若分式的值为零,则x=______.16.一次函数y=-x+4的图像是由正比例函数____________的图像向___(填“上”或“下”)平移__个单位长度得到的一条直线.17.在平面直角坐标系中,将直线y=-2x+1的图象向左平移2个单位,再向上平移1个单位,所得到直线的解析式是__________。18.若关于的方程的解为正数,则的取值范围是__________.三、解答题(共78分)19.(8分)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的性状,并说明理由;(2)连接EF,若AE=8厘米,∠A=60°,求线段EF的长.20.(8分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?21.(8分)有这样一个问题:探究函数的图象与性质.小亮根据学习函数的经验,对函数的图象与性质进行了探究。下面是小亮的探究过程,请补充完整:(1)函数中自变量x的取值范围是_________.(2)下表是y与x的几组对应值.x…-3-2-102345…y…---4-5-7m-1-2--…求m的值;(3)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)根据画出的函数图象,发现下列特征:该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线_________越来越靠近而永不相交.22.(10分)某发电厂共有6台发电机发电,每台的发电量为300万千瓦/月.该厂计划从今年7月开始到年底,对6台发电机各进行一次改造升级.每月改造升级1台,这台发电机当月停机,并于次月再投入发电,每台发电机改造升级后,每月的发电量将比原来提高20%.已知每台发电机改造升级的费用为20万元.将今年7月份作为第1个月开始往后算,该厂第x(x是正整数)个月的发电量设为y(万千瓦).(1)求该厂第2个月的发电量及今年下半年的总发电量;(2)求y关于x的函数关系式;(3)如果每发1千瓦电可以盈利0.04元,那么从第1个月开始,至少要到第几个月,这期间该厂的发电盈利扣除发电机改造升级费用后的盈利总额ω1(万元),将超过同样时间内发电机不作改造升级时的发电盈利总额ω2(万元)?23.(10分)在矩形ABCD中,BE平分∠ABC交CD边于点E.点F在BC边上,且FE⊥AE.(1)如图1,①∠BEC=_________°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD交AD于点H,交BE于点M.NH∥BE,NB∥HE,连接NE.若AB=4,AH=2,求NE的长.24.(10分)先化简,然后从中选出一个合适的整数作为的值代入求值.25.(12分)计算:(1)×-+|1-|;(2).26.如图1,为美化校园环境,某校计划在一块长为20m,宽为15m的长方形空地上修建一条宽为a(m)的甬道,余下的部分铺设草坪建成绿地.(1)甬道的面积为m2,绿地的面积为m2(用含a的代数式表示);(2)已知某公园公司修建甬道,绿地的造价W1(元),W2(元)与修建面积S之间的函数关系如图2所示.①园林公司修建一平方米的甬道,绿地的造价分别为元,元.②直接写出修建甬道的造价W1(元),修建绿地的造价W2(元)与a(m)的关系式;③如果学校决定由该公司承建此项目,并要求修建的甬道宽度不少于2m且不超过5m,那么甬道宽为多少时,修建的甬道和绿地的总造价最低,最低总造价为多少元?
参考答案一、选择题(每题4分,共48分)1、C【解题分析】
通过函数图象可得,货车出发1小时走的路程为60千米,客车到达终点所用的时间为6小时,根据行程问题的数量关系可以求出货车和客车的速度,利用数形结合思想及一元一次方程即可解答.【题目详解】解:由函数图象,得:货车的速度为60÷1=60千米/小时,客车的速度为600÷6=100千米/小时,故A错误;设客车离开起点x小时后,甲、乙两人第一次相遇,根据题意得:100x=60+60x,解得:x=1.5,∴离开起点后,两车第一次相遇时,距离起点为:1.5×100=150(千米),故B错误;甲从起点到终点共用时为:600÷60=10(小时),故C正确;∵客车到达终点时,所用时间为6小时,货车先出发1小时,∴此时货车行走的时间为7小时,∴货车走的路程为:7×60=420(千米),∴客车到达终点时,两车相距:600﹣420=180(千米),故D错误;故选C.【题目点拨】本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.2、D【解题分析】
根据被开方数是非负数,可得答案.【题目详解】解:由题意,得3﹣x≥0,解得x≤3,故选:D.【题目点拨】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.3、A【解题分析】
本题主要考查自变量的取值范围,根据二次根式的意义,被开方数是非负数.【题目详解】解:根据题意得:x-1≥0,解得x≥1.故选A.【题目点拨】本题主要考查的知识点为:二次根式有意义的条件:二次根式的被开方数是非负数.4、C【解题分析】
先将移项得:,然后两边平方,再利用完全平方公式展开,整理即可得解.【题目详解】∵,∴,∴,∴,故选C.【题目点拨】本题考查了完全平方公式,牢牢掌握平方公式是解决本题的关键.5、C【解题分析】试题解析:∵解方程x2-7x+12=0
得:x=3或1
∵对角线长为6,3+3=6,不能构成三角形;
∴菱形的边长为1.
∴菱形ABCD的周长为1×1=2.故选C.6、B【解题分析】
分别计算各选项的判别式△值,然后和0比较大小,再根据一元二次方程根与系数的关系就可以找出符合题意的选项.【题目详解】A、△=b2-4ac=1+24=25>0,方程有两个不相等的实数根,不符合题意;B、△=b2-4ac=36-36=0,方程有两个相等的实数根,符合题意;C、△=b2-4ac=25-40=-15<0,方程没有实数根,不符合题意;D、△=b2-4ac=81>0,方程有两个不相等的实数根,不符合题意,故选B.【题目点拨】本题考查了一元二次方程根的情况与与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7、C【解题分析】
根据题意和函数图象中的数据可以判断各个小题中的结论是否成立,从而可以解答本题.【题目详解】由图可得,AC的距离为120米,故①正确;乙的速度为:(60+120)÷3=60米/分,故②正确;a的值为:60÷60=1,故③错误;令[60+(120÷3)t]-60t≥10,得t≤,即若甲、乙两遥控车的距离不少于10米时,两车信号不会产生相互干扰,则两车信号不会产生相互干扰的t的取值范围是0≤t≤,故④正确;故选C.【题目点拨】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.8、C【解题分析】
根据垂直平分线的性质可得AE=CE,再根据平行四边形对边相等即可得解.【题目详解】解:∵AC的垂直平分线交AD于点E∴AE=CE,又∵四边形ABCD是平行四边形,∴AD=BC=6,CD=AB=4,∴C△CDE=CD+CE+DE=CD+AE+DE=CD+AD=4+6=10.故选C.【题目点拨】本题主要考查平行四边形与垂直平分线的性质,解此题的关键在于熟练掌握其知识点.9、B【解题分析】
欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【题目详解】A、∵42+52=41≠62,∴不能作为直角三角形三边长,故本选项错误;B、∵52+122=169=132,∴能作为直角三角形三边长,故本选项正确;C、∵62+72=85≠82,∴不能作为直角三角形三边长,故本选项错误;D、∵82+92=141≠102,∴不能作为直角三角形三边长,故本选项错误.故选B.【题目点拨】本题考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.10、C【解题分析】
各项分解得到结果,即可作出判断.【题目详解】解:A、原式=a(a+2b),不符合题意;B、原式=(a+b)(a-b),不符合题意;C、原式不能分解,符合题意;D、原式=(2a+b)2,不符合题意,故选:C.【题目点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11、D【解题分析】分析:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.详解:A、了解全国中学生心理健康现状调查范围广,适合抽样调查,故A错误;B、了解一片试验田里五种大麦的穗长情况调查范围广,适合抽样调查,故B错误;C、了解冷饮市场上冰淇淋的质量情况调查范围广,适合抽样调查,故C错误;D、调查你所在班级的每一个同学所穿鞋子的尺码情况,适合全面调查,故D正确;故选D.点睛:本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大.12、A【解题分析】
根据中位数的定义:中位数是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据,即可得解.【题目详解】根据中位数的定义,得5为其中位数,故答案为A.【题目点拨】此题主要考查中位数的定义,熟练掌握,即可解题.二、填空题(每题4分,共24分)13、AC=BD答案不唯一【解题分析】
由四边形ABCD的对角线互相垂直平分,可得四边形ABCD是菱形,再添加∠DAB=90°,即可得出四边形ABCD是正方形.【题目详解】解:可添加AC=BD,
理由如下:
∵四边形ABCD的对角线互相平分,
∴四边形ABCD是平行四边形,
∵AC⊥BD,∴平行四边形ABCD是菱形,
∵∠DAB=90°,
∴四边形ABCD是正方形.
故答案为:AC=BD(答案不唯一).【题目点拨】本题是考查正方形的判定,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.14、2cm≤h≤3cm【解题分析】
解:根据直角三角形的勾股定理可知筷子最长在水里面的长度为13cm,最短为12cm,则筷子露在外面部分的取值范围为:.故答案为:2cm≤h≤3cm【题目点拨】本题主要考查的就是直角三角形的勾股定理的实际应用问题.在解决“竹竿过门”、立体图形中最大值的问题时,我们一般都会采用勾股定理来进行说明,从而得出答案.我们在解决在几何体中求最短距离的时候,我们一般也是将立体图形转化为平面图形,然后利用勾股定理来进行求解.15、-1【解题分析】
分式的值为零:分子等于零,且分母不等于零.【题目详解】依题意,得
|x|-1=2且x-1≠2,
解得,x=-1.
故答案是:-1.【题目点拨】考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.16、y=-x,上,4【解题分析】分析:根据函数图象平移的规则“上加下减”,即可得出将y=-x的函数图象向上平移4个单位即可得到函数y=-x+4的图象,此题得解.详解:根据图形平移的规则“上加下减”,即可得出:将y=−x的函数图象向上平移4个单位即可得到函数y=−x+4的图象.故答案为:y=−x;上;4.点睛:本题主要考查了一次函数图像与几何变换.关键在于牢记函数图像的平移规则.17、y=-2x-2【解题分析】
利用平移中点的变化规律:横坐标左移加,右移减;纵坐标上移加,下移减,求解即可.【题目详解】将直线y=−2x+1的图象向左平移2个单位,再向上平移一个单位,得到的直线的解析式是:y=−2(x+2)+1+1=−2x−2,即y=−2x−2.【题目点拨】本题考查了一次函数图象与几何变换,熟练掌握平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.18、且【解题分析】
首先去分母化成整式方程,求得x的值,然后根据方程的解大于0,且x-1≠0即可求得m的范围.【题目详解】解:去分母,得1x+m=3(x-1),
去括号,得1x+m=3x-3,
解得:x=m+3,
根据题意得:m+3-1≠0且m+3>0,
解得:m>-3且m≠-1.
故答案是:m>-3且m≠-1.【题目点拨】本题考查了分式方程的解,注意:忽视x-1≠0是本题的易错点.三、解答题(共78分)19、(1)详见解析(2)EF=8【解题分析】
(1)由AE=AF=ED=DF,根据四条边都相等的四边形是菱形,即可证得:四边形AEDF是菱形,(2)首先连接EF,由AE=AF,∠A=60°,可证得△EAF是等边三角形,则可求得线段EF的长.【题目详解】解:(1)菱形,理由如下:∵根据题意得:AE=AF=ED=DF,∴四边形AEDF是菱形;(2)连接EF,∵AE=AF,∠A=60°,∴△EAF是等边三角形,∴EF=AE=8厘米.20、(1)每台电冰箱的进价2000元,每台空调的进价1600元.(2)此时应购进电冰箱33台,则购进空调67台.【解题分析】试题分析:(1)设每台电冰箱的进价m元,每台空调的进价(m﹣400)元,根据:“用8000元购进电冰箱的数量与用6400元购进空调的数量相等”列分式方程求解可得;(2)设购进电冰箱x台,则购进空调(100﹣x)台,根据:总利润=冰箱每台利润×冰箱数量+空调每台利润×空调数量,列出函数解析式,结合x的范围和一次函数的性质可知最值情况.解:(1)设每台电冰箱的进价m元,每台空调的进价(m﹣400)元依题意得,,解得:m=2000,经检验,m=2000是原分式方程的解,∴m=2000;∴每台电冰箱的进价2000元,每台空调的进价1600元.(2)设购进电冰箱x台,则购进空调(100﹣x)台,根据题意得,总利润W=100x+150(100﹣x)=﹣50x+15000,∵﹣50<0,∴W随x的增大而减小,∵33≤x≤40,∴当x=33时,W有最大值,即此时应购进电冰箱33台,则购进空调67台.21、(1);(2)1;(2)见解析;(4)y=-2.【解题分析】
(1)根据分母不为0即可得出关于x的一元一次不等式,解之即可得出结论;
(2)将x=2代入函数解析式中求出m值即可;
(2)连点成线即可画出函数图象;
(4)观察函数图象即可求解.【题目详解】解:(1)由题意得:x-1≠0,
解得:x≠1.
故答案为:x≠1;
(2)当x=时,m=-2=4-2=1,
即m的值为1;
(2)图象如图所示:
(4)根据画出的函数图象,发现下列特征:
该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线y=2越来越靠近而永不相交,
故答案为y=2.【题目点拨】本题考查了反比例函数图象上点的坐标特征,函数自变量的取值范围以及函数图象,连点成曲线画出函数图象是解题的关键.22、(1)该厂第4个月的发电量为1540万千瓦;今年下半年的总发电量为1万千瓦;(4)4140.(3)3个月【解题分析】试题分析:(1)由题意可以知道第1个月的发电量是300×5千瓦,第4个月的发电量为300×4+300(1+40%),第3个月的发电量为300×3+300×4×(1+40%),第4个月的发电量为300×4+300×3×(1+40%),第5个月的发电量为300×1+300×4×(1+40%),第4个月的发电量为300×5×(1+40%),将4个月的总电量加起来就可以求出总电量.(4)由总发电量=各台机器的发电量之和根据(1)的结论设y与x之间的关系式为y=kx+b建立方程组求出其解即可.(3)由总利润=发电盈利﹣发电机改造升级费用,分别表示出ω1,ω4,再根据条件建立不等式求出其解即可.试题解析:解:(1)由题意,得第4个月的发电量为:300×4+300(1+40%)=1540千瓦,今年下半年的总发电量为:300×5+1540+300×3+300×4×(1+40%)+300×4+300×3×(1+40%)+300×1+300×4×(1+40%)+300×5×(1+40%)=1500+1540+1440+1480+340+1800=1.答:该厂第4个月的发电量为1540千瓦;今年下半年的总发电量为1千瓦.(4)设y与x之间的关系式为y=kx+b,由题意,得,解得:.∴y关于x的函数关系式为y=40x+1440(1≤x≤4).(3)设到第n个月时ω1>ω4,当n=4时,ω1=1×0.04﹣40×4=474,ω4=300×4×4×0.04=434,ω1>ω4不符合.∴n>4.∴ω1=[1+340×4(n﹣4)]×0.04﹣40×4=84.4n﹣440,ω4=300×4n×0.04=74n.当ω1>ω4时,84.4n﹣440>74n,解之得n>14.7,∴n=3.答:至少要到第3个月ω1超过ω4.考点:1.一次函数和不等式的应用;4.由实际问题列函数关系式.23、(1)①45;②△ADE≌△ECF,理由见解析;(2)2.【解题分析】
(1)①根据矩形的性质得到,根据角平分线的定义得到,根据三角形内角和定理计算即可;②利用定理证明;(2)连接,证明四边形是矩形,得到,根据勾股定理求出即可.【题目详解】(1)①∵四边形ABCD为矩形,∴∠ABC=∠BCD=90°,∵BE平分∠ABC,∴∠EBC=45°,∴∠BEC=45°,故答案为45;②△ADE≌△ECF,理由如下:∵四边形ABCD是矩形,∴∠ABC=∠C=∠D=90°,AD=BC.∵FE⊥AE,∴∠AEF=90°.∴∠AED+∠FEC=180°-∠AEF=90°.∵∠AED+∠DAE=90°,∴∠FEC=∠EAD,∵BE平分∠ABC,∴∠BEC=45°.∴∠EBC=∠BEC.∴BC=EC.∴AD=EC.在△ADE和△ECF中,,∴△ADE≌△ECF;(2)连接HB,如图2,∵FH∥CD,∴∠HFC=180°-∠C=90°.∴四边形HFCD是矩形.∴DH=CF,∵△ADE≌△ECF,∴DE=CF.∴DH=DE.∴∠DHE=∠DEH=45°.∵∠B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022年三年级老师个人年终工作总结
- 吉林省“BEST”合作体六校2024-2025学年高三上学期12月第三次联考物理试题含答案
- 销售助理个人工作总结
- 部编版五年级上册 太阳 教学设计
- 长距离供热管道技术可行性分析
- 2024年艺术鉴赏杂志订阅与艺术展览合作合同3篇
- 电分课程设计感谢
- 关于工商银行中间业务发展情况的调研报告
- 2024年物流包装合同的法律标准与合同履行要求3篇
- 城中村改造项目实施计划与进度安排
- 工业传感器行业市场调研分析报告
- 小学生心理健康讲座5
- 国家职业技术技能标准 X2-10-07-18 陶瓷工艺师(试行)劳社厅发200633号
- 宗教签约合同模板
- 员工三级安全培训试题带答案(达标题)
- 2024年银行考试-银行间本币市场交易员资格考试近5年真题附答案
- 2024年湖南长沙雨花区招聘社区专职工作人员26人历年高频难、易错点500题模拟试题附带答案详解
- 期末检测卷(试题)-2024-2025学年北师大版五年级上册数学
- 2023年人民日报出版社有限责任公司招聘考试试题及答案
- 冀教版小学英语四年级上册全册教案
- 冀教版五年级上册脱式计算题100道及答案
评论
0/150
提交评论