江苏省南京师大二附中2024届数学八年级第二学期期末学业水平测试试题含解析_第1页
江苏省南京师大二附中2024届数学八年级第二学期期末学业水平测试试题含解析_第2页
江苏省南京师大二附中2024届数学八年级第二学期期末学业水平测试试题含解析_第3页
江苏省南京师大二附中2024届数学八年级第二学期期末学业水平测试试题含解析_第4页
江苏省南京师大二附中2024届数学八年级第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南京师大二附中2024届数学八年级第二学期期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s2.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC;其中正确结论的个数为()A.1 B.2 C.3 D.43.下列各式中,运算正确的是A. B. C. D.4.已知一元二次方程,则它的一次项系数为()A. B. C. D.5.如图是甲、乙两个探测气球所在位置的海拔高度(单位:)关于上升时间(单位:)的函数图像.有下列结论:①当时,两个探测气球位于同一高度②当时,乙气球位置高;③当时,甲气球位置高;其中,正确结论的个数是()A.个 B.个 C.个 D.个6.如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为()A. B.4 C. D.27.下列事件:①上海明天是晴天,②铅球浮在水面上,③平面中,多边形的外角和都等于360度,属于确定事件的个数有()A.0个 B.1个 C.2个 D.3个8.正方形具有而菱形不一定具有的性质是()A.四边相等 B.对角线相等 C.对角线互相垂直 D.对角线互相平分9.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为抢占市场份额,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价()元.A.3B.5C.2D.2.510.如果一个多边形的内角和是它外角和的倍,那么这个多边形的边数为()A. B. C. D.11.如图,某人从点A出发,前进8m后向右转60°,再前进8m后又向右转60°,按照这样的方式一直走下去,当他第一次回到出发点A时,共走了()A.24m B.32m C.40m D.48m12.若分式有意义,则的取值范围是()A. B. C. D.二、填空题(每题4分,共24分)13.一个三角形的两边的长分别是3和5,要使这个三角形为直角三角形,则第三条边的长为_____.14.如图将△ABC沿BC平移得△DCE,连AD,R是DE上的一点,且DR:RE=1:2,BR分别与AC,CD相交于点P,Q,则BP:PQ:QR=__.15.如图,点,是的边,上的点,已知,,分别是,,中点,连接BE,FH,若BD=8,CE=6,,∠FGH=90°,则FH长为_______.16.如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为______.17.某商场品牌手机经过5、6月份连续两次降价,每部售价由5000元降到4050元,设平均每次降价的百分率为x,根据题意可列方程:_____.18.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是__.三、解答题(共78分)19.(8分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且,连接AE、AF、EF(1)求证:(2)若,,求的面积.20.(8分)已知,求代数式的值。21.(8分)为贯彻党的“绿水青山就是金山银山”的理念,我市计划购买甲、乙两种树苗共7000株用于城市绿化,甲种树苗每株24元,一种树苗每株30元相关资料表明:甲、乙两种树苗的成活率分别为、.若购买这两种树苗共用去180000元,则甲、乙两种树苗各购买多少株?若要使这批树苗的总成活率不低于,则甲种树苗至多购买多少株?在的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.22.(10分)为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE.(精确到0.1m)(下列数据提供参考:20°=0.3420,20°=0.9397,20°=0.3640)23.(10分)已知Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a,b,c,设△ABC的面积为S.(1)填表:三边a,b,cSc+b-ac-b+a3,4,565,12,13208,15,1724(2)①如果m=(c+b-a)(c-b+a),观察上表猜想S与m之间的数量关系,并用等式表示出来.②证明①中的结论.24.(10分)如图1,在正方形ABCD中,点E、F分别是边BC、CD上的点,且CE=CF,连接AE,AF,取AE的中点M,EF的中点N,连接BM,MN.(1)请判断线段BM与MN的数量关系和位置关系,并予以证明.(2)如图2,若点E在CB的延长线上,点F在CD的延长线上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.25.(12分)阅读材料:小华像这样解分式方程解:移项,得:通分,得:整理,得:分子值取0,得:x+5=0即:x=﹣5经检验:x=﹣5是原分式方程的解.(1)小华这种解分式方程的新方法,主要依据是;(2)试用小华的方法解分式方程26.如图(1),在矩形中,分别是的中点,作射线,连接.(1)请直接写出线段与的数量关系;(2)将矩形变为平行四边形,其中为锐角,如图(2),,分别是的中点,过点作交射线于点,交射线于点,连接,求证:;(3)写出与的数量关系,并证明你的结论.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

根据自变量、因变量的含义,以及声音在空气中传播的速度与空气温度关系逐一判断即可.【题目详解】∵在这个变化中,自变量是温度,因变量是声速,∴选项A正确;

∵根据数据表,可得温度越高,声速越快,∴选项B正确;

∵342×5=1710(m),∴当空气温度为20℃时,声音5s可以传播1710m,∴选项C错误;

∵324-318=6(m/s),330-324=6(m/s),336-330=6(m/s),342-336=6(m/s),348-342=6(m/s),∴当温度每升高10℃,声速增加6m/s,∴选项D正确.故选C.【题目点拨】此题主要考查了自变量、因变量的含义和判断,要熟练掌握.2、B【解题分析】分析:①根据三角形内角和为180°易证∠PAB+∠PBA=90°,易证四边形AECF是平行四边形,即可解题;②根据平角定义得:∠APQ+∠BPC=90°,由正方形可知每个内角都是直角,再由同角的余角相等,即可解题;③根据平行线和翻折的性质得:∠FPC=∠PCE=∠BCE,∠FPC≠∠FCP,且∠PFC是钝角,△FPC不一定为等腰三角形;④当BP=AD或△BPC是等边三角形时,△APB≌△FDA,即可解题.详解:①如图,EC,BP交于点G;∵点P是点B关于直线EC的对称点,∴EC垂直平分BP,∴EP=EB,∴∠EBP=∠EPB,∵点E为AB中点,∴AE=EB,∴AE=EP,∴∠PAB=∠PBA,∵∠PAB+∠PBA+∠APB=180°,即∠PAB+∠PBA+∠APE+∠BPE=2(∠PAB+∠PBA)=180°,∴∠PAB+∠PBA=90°,∴AP⊥BP,∴AF∥EC;∵AE∥CF,∴四边形AECF是平行四边形,故①正确;②∵∠APB=90°,∴∠APQ+∠BPC=90°,由折叠得:BC=PC,∴∠BPC=∠PBC,∵四边形ABCD是正方形,∴∠ABC=∠ABP+∠PBC=90°,∴∠ABP=∠APQ,故②正确;③∵AF∥EC,∴∠FPC=∠PCE=∠BCE,∵∠PFC是钝角,当△BPC是等边三角形,即∠BCE=30°时,才有∠FPC=∠FCP,如右图,△PCF不一定是等腰三角形,故③不正确;④∵AF=EC,AD=BC=PC,∠ADF=∠EPC=90°,∴Rt△EPC≌△FDA(HL),∵∠ADF=∠APB=90°,∠FAD=∠ABP,当BP=AD或△BPC是等边三角形时,△APB≌△FDA,∴△APB≌△EPC,故④不正确;其中正确结论有①②,2个,故选B.点睛:本题考查了全等三角形的判定和性质,等腰三角形的性质和判定,矩形的性质,翻折变换,平行四边形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.3、D【解题分析】

根据合并同类项法则、同底数幂除法法则、幂的乘方的运算法则逐项进行判断即可得.【题目详解】A、,故A选项错误;B、、不是同类项,不能合并,故B选项错误;C、,故C选项错误;D、,故D选项正确,故选D.【题目点拨】本题考查了合并同类项、同底数幂除法、幂的乘方等,熟练掌握各运算的运算法则是解题的关键.4、D【解题分析】

根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项可得答案.【题目详解】解:一元二次方程,则它的一次项系数为-2,故选:D.【题目点拨】此题主要考查了一元二次方程的一般形式,关键是掌握一元二次方程的一般形式为ax2+bx+c=0(a≠0).5、D【解题分析】

根据图象进行解答即可.【题目详解】解:①当x=10时,两个探测气球位于同一高度,正确;

②当x>10时,乙气球位置高,正确;

③当0≤x<10时,甲气球位置高,正确;

故选:D.【题目点拨】本题考查了一次函数的应用、解题的关键是根据图象进行解答.6、A【解题分析】

试题分析:∵菱形ABCD的周长为16,∠ABC=120°,∴∠BAD=60°,AC⊥BD,AD=AB=4∴△ABD为等边三角形,∴EB=在Rt△ABE中,AE=故可得AC=2AE=.故选A.考点:菱形的性质.7、C【解题分析】

确定事件就是一定发生或一定不发生的事件,根据定义即可作出判断【题目详解】解:①上海明天是晴天,是随机事件;②铅球浮在水面上,是不可能事件,属于确定事件;③平面中,多边形的外角和都等于360度,是必然事件,属于确定事件;故选:C.【题目点拨】此题考查随机事件,解题关键在于根据定义进行判断8、B【解题分析】

观察四个选项,分别涉及了四条边和对角线,我们应对照正方形和菱形边及对角线的性质,找出不同即可.【题目详解】正方形和菱形的四条边均相等,每条对角线均平分一组对角,正方形两条对角线相等且互相垂直平分,菱形对角线互相垂直且平分,但不相等.故选B.【题目点拨】本题考查了正方形和菱形性质的知识,解决本题的关键是熟练掌握正方形和菱形的性质.9、A【解题分析】

此题是一元二次方程的实际问题.设售价为x元,则每件的利润为(x-40)元,由每降价1元,可多卖20件得:降价(60-x)元可增加销量20(60-x)件,即降价后的销售量为[300+20(60-x)]件;根据销售利润=销售量×每件的利润,可列方程求解.需要注意的是在实际问题中,要注意分析方程的根是否符合实际问题,对于不合题意的根要舍去.【题目详解】设售价为x元时,每星期盈利为6120元,由题意得(x﹣40)[300+20(60﹣x)]=6120,解得:x1=57,x2=58,由已知,要多占市场份额,故销售量要尽量大,即售价要低,故舍去x2=58,所以,必须降价:60-57=3(元).故选:A【题目点拨】本题考核知识点:一元二次方程的实际问题.解题关键点:理解题意,根据数量关系列出方程.10、B【解题分析】

根据多边形的内角和公式(n−2)⋅110°与外角和定理列出方程,然后求解即可.【题目详解】解:设这个多边形是n边形,

根据题意得,(n−2)⋅110°=3×360°,

解得n=1.

故选B.【题目点拨】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.11、D【解题分析】

从A点出发,前进8m后向右转60°,再前进8m后又向右转60°,…,这样一直走下去,他第一次回到出发点A时,所走路径为正多边形,根据正多边形的外角和为360°,判断多边形的边数,再求路程.【题目详解】解:依题意可知,某人所走路径为正多边形,设这个正多边形的边数为n,则60n=360,解得n=6,故他第一次回到出发点A时,共走了:8×6=48(m).故选:D.【题目点拨】本题考查了多边形的外角和,正多边形的判定与性质.关键是根据每一个外角判断多边形的边数.12、A【解题分析】

根据分式有意义的条件,得到关于x的不等式,进而即可求解.【题目详解】∵分式有意义,∴,即:,故选A.【题目点拨】本题主要考查分式有意义的条件,掌握分式的分母不等于零,是解题的关键.二、填空题(每题4分,共24分)13、4或【解题分析】

解:①当第三边是斜边时,第三边的长的平方是:32+52=34;②当第三边是直角边时,第三边长的平方是:52-32=25-9=16=42,故答案是:4或.14、2:1:1【解题分析】

根据平移的性质得到AC∥DE,BC=CE,得到△BPC∽△BRE,根据相似三角形的性质得到PC=DR,根据△PQC∽△RQD,得到PQ=QR,即可求解.【题目详解】由平移的性质可知,AC∥DE,BC=CE,

∴△BPC∽△BRE,

∴,

∴PC=RE,BP=PR,

∵DR:RE=1:2,

∴PC=DR,

∵AC∥DE,

∴△PQC∽△RQD,

∴=1,

∴PQ=QR,

∴BP:PQ:QR=2:1:1,

故答案为2:1:1.【题目点拨】本题考查了相似三角形的判定和性质,平移的性质,掌握相似三角形的判定定理和性质定理是解题的关键.15、【解题分析】

利用三角形中位线求得线段FG、GH;再利用勾股定理即可求出FH的长.【题目详解】解:∵,,分别是,,中点∴∵∠FGH=90°∴为直角三角形根据勾股定理得:故答案为:5【题目点拨】本题考查了三角形中位线定理以及勾股定理,熟练掌握三角形中位线定理是解答本题的关键.16、32a【解题分析】

根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【题目详解】如图所示:∵△A1B1A2是等边三角形,

∴A1B1=A2B1,∠3=∠4=∠12=60°,

∴∠2=120°,

∵∠MON=30°,

∴∠1=180°-120°-30°=30°,

又∵∠3=60°,

∴∠5=180°-60°-30°=90°,

∵∠MON=∠1=30°,

∴OA1=A1B1=a,

∴A2B1=a,

∵△A2B2A3、△A3B3A4是等边三角形,

∴∠11=∠10=60°,∠13=60°,

∵∠4=∠12=60°,

∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,

∴∠1=∠6=∠7=30°,∠5=∠8=90°,

∴A2B2=2B1A2,B3A3=2B2A3,

∴A3B3=4B1A2=4a,

A4B4=8B1A2=8a,

A5B5=16B1A2=16a,

以此类推:A6B6=32B1A2=32a.

故答案是:32a.【题目点拨】考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.17、5000(1﹣x)2=1【解题分析】

根据现在售价5000元月平均下降率现在价格1元,即可列出方程.【题目详解】解:设平均每次降价的百分率为x,根据题意可列方程:5000(1﹣x)2=1.故答案为:5000(1﹣x)2=1.【题目点拨】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为.18、【解题分析】试题分析:首先设点P的坐标为(x,y),根据矩形的周长可得:2(x+y)=10,则y=-x+5,即该直线的函数解析式为y=-x+5.三、解答题(共78分)19、(1)详见解析;(2)80.【解题分析】

(1)根据SAS证明即可;

(2)根据勾股定理求得AE=,再由旋转的性质得出,从而由面积公式得出答案.【题目详解】四边形ABCD是正方形,

,

而F是CB的延长线上的点,

,

在和中

,

;

(2),

,

在中,DE=4,AD=12,

,

可以由绕旋转中心

A点,按顺时针方向旋转90度得到,

,

的面积(平方单位).【题目点拨】本题主要考查正方形性质和全等三角形判定与性质及旋转性质,熟练掌握性质是解题关键.20、【解题分析】

把x的值直接代入,再根据乘法公式进行计算即可.【题目详解】解:当时,【题目点拨】此题主要考查整式的运算,解题的关键是熟知整式的运算公式.21、甲、乙两种树苗各购买5000、2000株;甲种树苗至多购买2800株;最少费用为

元.【解题分析】

列方程求解即可;根据题意,甲乙两种树苗的存货量大于等于树苗总量的列出不等式;用x表示购买树苗的总费用,根据一次函数增减性讨论最小值.【题目详解】设购买甲种树苗x株,则购买乙种树苗株,由题意得:解得,则答:甲、乙两种树苗各购买5000、2000株;根据题意得:解得则甲种树苗至多购买2800株设购买树苗的费用为W,根据题意得:随x的增大而减小当时,【题目点拨】本题为一次函数实际应用问题,综合考察一元一次方程、一元一次不等式及一次函数的增减性.22、限高应标3.0.【解题分析】

由图得:ÐA=ÐDCE=20º∵AB=10,在Rt△ABD中,=,∴BD=10×0.3640=3.64∴DC=BD-BC=3.64-0.5=3.14∵在Rt△DEC中,=,∴CE=3.14×0.9397≈3.0答:限高应标3.0.【题目点拨】这是一题用利用三角函数解决的实际问题,关键在于构造直角三角形Rt△ABD和Rt△DEC.23、(1)6,30,60,4,6,10;(2)①S=m;②见解析【解题分析】

(1)根据直角三角形的面积等于两条直角边的乘积除以2,可求得,把三边对应数值分别代入c-b+a,即得结果;(2)①通过图表中数据分析,可得4S=m,即得S与m的关系式;②利用平方差公式和完全平方公式,把m展开化简,利用勾股定理即可证明.【题目详解】(1)直角三角形面积S=,代入数据分别计算得:,,,由,分别代入计算得:5-4+3=4,13-12+5=6,17-15+8=10;三边a,b,cSc+b-ac-b+a3,4,56645,12,13302068,15,17602410(2)①结合图表可以看出:6×4÷4=6,20×6÷4=30,24×10÷4=60,即得m=4S,所以S=m;②证明:∵m=(c+b-a)(c-b+a)=[c+(b-a)][(c-(b-a)]=[c2-(b-a)2]=[c2-(a2+b2)+2ab]在Rt△ABC中,c2=a2+b2,∴m=×2ab=ab,又∵S=ab,∴S=m.【题目点拨】本题考查了直角三角形的面积求法,平方差公式和完全平方公式的应用,勾股定理的应用,掌握直角三角形的三边关系以及平方差公式和完全平方公式是解题的关键.24、(1)BM=MN,BM⊥MN,证明见解析;(2)仍然成立,证明见解析【解题分析】

(1)根据已知正方形ABCD的边角相等关系,推出△ABE≌△ADF(SAS),得出AE=AF,利用MN是△AEF的中位线,BM为Rt△ABE的中线,可得BM=MN,由外角性质,得出∠BME=∠1+∠3,再由MN∥AF,∠1+∠2+∠EAF=∠BAD=90°,等角代换可推出结论;(2)同(1)思路一样,证明△ABE≌△ADF(SAS),利用外角性质和中位线平行关系,通过等角代换即得证明结论.【题目详解】(1)BM=MN,BM⊥MN.证明:在正方形ABCD中,∠BAD=∠ABC=∠ADC=90°,AB=AD=BC=DC,∵CE=CF,∴BC-CE=DC-CF,∴BE=DF,∴△ABE≌△ADF(SAS),∴∠1=∠2,AE=AF,∵M为AE的中点,N为EF的中点,∴MN是△AEF的中位线,BM为Rt△ABE的中线.∴MN∥AF,MN=AF,BM=AE=AM,∴BM=MN,∠EMN=∠EAF,∵BM=AM,∴∠1=∠3,∠2=∠3,∴∠BME=∠1+∠3=∠1+∠2,∴∠BMN=∠BME+∠EMN=∠1+∠2+∠EAF=∠BAD=90°,∴BM⊥MN.故答案为:BM=MN,BM⊥MN.(2)(1)中结论仍然成立.证明:在正方形ABCD中,∠BAD=∠ABC=∠ADC=90°,AB=AD=BC=DC,∴∠ABE=∠ADF=90°,∵CE=CF,∴CE-BC=CF-DC,∴BE=DF,∴△ABE≌△ADF(SAS),∴∠1=∠2,AE=AF,同理(1)得MN∥AF,MN=AF,BM=AE=AM,∴BM=MN,同理(1)得∠BME=∠1+∠2,∠EMN=∠EAF,∴∠BMN=∠EMN-∠BME=∠EAF-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论