2024届内蒙古通辽市科尔沁区第七中学数学八下期末综合测试试题含解析_第1页
2024届内蒙古通辽市科尔沁区第七中学数学八下期末综合测试试题含解析_第2页
2024届内蒙古通辽市科尔沁区第七中学数学八下期末综合测试试题含解析_第3页
2024届内蒙古通辽市科尔沁区第七中学数学八下期末综合测试试题含解析_第4页
2024届内蒙古通辽市科尔沁区第七中学数学八下期末综合测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届内蒙古通辽市科尔沁区第七中学数学八下期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有()A.7队 B.6队 C.5队 D.4队2.下面的多边形中,内角和与外角和相等的是()A. B.C. D.3.已知甲.乙两组数据的平均数相等,若甲组数据的方差=0.055,乙组数据的方差=0.105,则()A.甲组数据比乙组数据波动大 B.乙组数据比甲组数据波动大C.甲组数据与乙组数据的波动一样大 D.甲.乙两组数据的数据波动不能比较4.如图,,,,都是正三角形,边长分别为2,,,,且BO,,,都在x轴上,点A,,,从左至右依次排列在x轴上方,若点是BO中点,点是中点,,且B为,则点的坐标是A. B. C. D.5.如图,在ΔABC中,∠B=55°,∠C=30∘,分别以点A和点C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接A.65∘ B.75∘ C.556.如图,在RtΔABC中,∠C=90°,BC=6,AC=8,则AB的长度为()A.7 B.8 C.9 D.107.已知分式的值是零,那么x的值是()A.-2 B.0 C.2 D.8.如图,在同一平面直角坐标系中,函数与函数的图象大致是()A. B.C. D.9.一组数:3,5,4,2,3的中位数是()A.2 B.3 C.3.5 D.410.如图,不等式组的解集在数轴上表示正确的是()A. B.C. D.11.某中学46名女生体育中考立定跳远成绩如下表:跳远成绩160170180190200210人数3166984这些立定跳远成绩的中位数和众数分别是A.185,170 B.180,170 C.7.5,16 D.185,1612.如图所示,已知A(,y1),B(2,y2)为反比例函数图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0) B.(1,0) C.(,0) D.(,0)二、填空题(每题4分,共24分)13.如图,将直角三角形纸片置于平面直角坐标系中,已知点,将直角三角形纸片绕其右下角的顶点依次按顺时针方向旋转,第一次旋转至图位置,第二次旋转至图位置,···,则直角三角形纸片旋转次后,其直角顶点与坐标轴原点的距离为__________.14.不等式组恰有两个整数解,则实数的取值范围是______.15.将的正方形网格如图放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是正方形的顶点都在格点上,若直线与正方形有公共点,则的取值范围是________________.16.如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.17.若一组数据,,,,的众数是,则这组数据的方差是__________.18.若平行四边形中相邻两个内角的度数比为1:3,则其中较小的内角是__________度.三、解答题(共78分)19.(8分)解方程:-=1.20.(8分)将正方形ABCD放在如图所示的直角坐标系中,A点的坐标为(4,0),N点的坐标为(3,0),MN平行于y轴,E是BC的中点,现将纸片折叠,使点C落在MN上,折痕为直线EF.(1)求点G的坐标;(2)求直线EF的解析式;(3)设点P为直线EF上一点,是否存在这样的点P,使以P,F,G的三角形是等腰三角形?若存在,直接写出P点的坐标;若不存在,请说明理由.21.(8分)如图,一架5米长的梯子AB斜靠在一面墙上,梯子底端B到墙底的垂直距离BC为3米.(1)求这个梯子的顶端A到地面的距离AC的值;(2)如果梯子的顶端A沿墙AC竖直下滑1米到点D处,求梯子的底端B在水平方向滑动了多少米?22.(10分)如图,已知点A的坐标为(a,4)(其中a<-3),射线OA与反比例函数的图象交于点P,点B,C分别在函数的图象上,且AB∥x轴,AC∥y轴,连结BO,CO,BP,CP.(1)当a=-6,求线段AC的长;(2)当AB=BO时,求点A的坐标;(3)求证:.23.(10分)如图,点E、F分别在矩形ABCD的边BC、AD上,把这个矩形沿EF折叠后,点D恰好落在BC边上的G点处,且∠AFG=60°.(1)求证:GE=2EC;(2)连接CH、DG,试证明:CH//DG.24.(10分)在小正方形组成的15×15的网格中,四边形ABCD和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,(1)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A1B1C1D1.25.(12分)如图,在平面直角坐标系中,直线与双曲线交于第一、三象限内的、两点,与轴交于点,过点作轴,垂足为,,,点的纵坐标为1.(1)求反比例函数和一次函数的函数表达式;(2)连接,求四边形的面积;(3)在(1)的条件下,根据图像直接写出反比例函数的值小于一次函数的值时,自变量的取值范围.26.如图,在▱ABCD中,E、F为对角线BD上的两点,且BE=DF.求证:∠BAE=∠DCF.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】解:设邀请x个球队参加比赛,依题意得1+2+3+…+x-1=10,即,∴x2-x-20=0,∴x=5或x=-4(不合题意,舍去).故选C2、B【解题分析】

根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.【题目详解】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=1.故选:B.【题目点拨】此题考查多边形内角(和)与外角(和),解题关键掌握运算公式.3、B【解题分析】试题分析:先比较两组数据的方差,再根据方差的意义即可判断.∵∴乙组数据比甲组数据波动大故选B.考点:方差的意义点评:生活中很多数据的收集整理都涉及方差的意义应用,故此类问题在中考中较为常见,常以填空题、选择题形式出现,难度一般,需多加留心.4、C【解题分析】

根据图形,依次表示各个点A的坐标,可以分别发现横、纵坐标的变化规律,则问题可解.【题目详解】根据题意点A在边长为2的等边三角形顶点,则由图形可知点A坐标为(-1,)由于等边三角形△A1B1C1,的顶点A1在BO中点,则点A到A1的水平距离为边长2,则点A1坐标为(1,2)以此类推,点A2坐标为(5,4),点A3坐标为(13,8),各点横坐标从-1基础上一次增加2,22,23,…,纵坐标依次是前一个点纵坐标的2倍则点A6的横坐标是:-1+2+22+23+24+25+26=125,纵坐标为:26×=64则点A6坐标是(125,64)故选C.【题目点拨】本题是平面直角坐标系下的点坐标规律探究题,考查了等边三角形的性质,应用了数形结合思想.5、A【解题分析】

根据内角和定理求得∠BAC=95°,由中垂线性质知DA=DC,即∠DAC=∠C=30°,从而得出答案.【题目详解】在△ABC中,∵∠B=55°,∠C=30°,∴∠BAC=180°−∠B−∠C=95°,由作图可知MN为AC的中垂线,∴DA=DC,∴∠DAC=∠C=30°,∴∠BAD=∠BAC−∠DAC=65°,故选:A.【题目点拨】此题考查线段垂直平分线的性质,作图—基本作图,解题关键在于求出∠BAC=95°.6、D【解题分析】

根据勾股定理即可得到结论.【题目详解】在Rt△ABC中,∠C=90°,BC=6,AC=8,∴AB=AC2故选D.【题目点拨】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.7、A【解题分析】

分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可.据此可以解答本题.【题目详解】∵,∴x+2=0且x-2≠0,解得x=-2,故选A.【题目点拨】本题考查了分式的值为零的条件,分母不能为0不要漏掉.8、A【解题分析】

分情况讨论:和时,根据图像的性质,即可判定.【题目详解】当时,函数的图像位于第一、三象限,函数的图像第一、三、四象限;当时,函数的图像位于第二、四象限,函数的图像第二、三、四象限;故答案为A.【题目点拨】此题主要考查一次函数和反比例函数的性质,熟练掌握,即可解题.9、B【解题分析】

按大小顺序排列这组数据,最中间那个数是中位数.【题目详解】解:从小到大排列此数据为:2,1,1,4,5,位置处于最中间的数是1,

所以这组数据的中位数是1.

故选:B.【题目点拨】此题主要考查了中位数.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.10、B【解题分析】

首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.【题目详解】解:解第一个不等式得:x>-1;解第二个不等式得:x≤1,在数轴上表示,故选B.【题目点拨】此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<“>”要用空心圆点表示.11、B【解题分析】

根据中位数和众数的定义求解即可.【题目详解】由上表可得中位数是180,众数是170故答案为:B.【题目点拨】本题考查了中位数和众数的问题,掌握中位数和众数的定义是解题的关键.12、D【解题分析】

求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【题目详解】∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:k=-1,b=,∴直线AB的解析式是y=-x+,当y=0时,x=,即P(,0),故选D.【题目点拨】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.二、填空题(每题4分,共24分)13、【解题分析】

根据题意,由2019÷3=673可得,直角三角形纸片旋转2019次后图形应与图③相同,利用勾股定理与规律即可求得答案.【题目详解】解:由题意可知AO=3,BO=4,则AB=,∵2019÷3=673,则直角三角形纸片旋转次后,其直角顶点与坐标轴原点的距离为:673×(3+4+5)=8076.故答案为8076.【题目点拨】本题主要考查勾股定理,图形规律题,解此题的关键在于根据题意准确找到图形的变化规律,利用勾股定理求得边长进行解答即可.14、【解题分析】

首先利用不等式的基本性质解不等式组,从不等式的解集中找出适合条件的整数解,再进一步确定字母的取值范围即可.【题目详解】解:对于,解不等式①得:,解不等式②得:,因为原不等式组有解,所以其解集为,又因为原不等式组恰有两个整数解,所以其整数解应为7,8,所以实数a应满足,解得.故答案为.【题目点拨】本题考查了不等式组的解法和整数解的确定,解题的关键是熟练掌握不等式的基本性质,尤其是性质3,即不等式的两边都乘以或除以一个负数时,不等号的方向要改变,这在解不等式时要随时注意.15、≤k≤1.【解题分析】

分别确定点A和点C的坐标,代入正比例函数的解析式即可求得k的取值范围.【题目详解】解:由题意得:点A的坐标为(1,1),点C的坐标为(1,1),∵当正比例函数经过点A时,k=1,当经过点C时,k=,∴直线y=kx(k≠0)与正方形ABCD有公共点,k的取值范围是≤k≤1,故答案为:≤k≤1.【题目点拨】本题考查了正比例函数的性质,解题的关键是求得点A和点C的坐标,难度不大.16、2【解题分析】

如图,过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1∵点B在双曲线上,且AB∥x轴,∴四边形BEOC的面积为3∴四边形ABCD为矩形,则它的面积为3-1=217、13.1【解题分析】

首先根据众数的定义求出的值,进而利用方差公式得出答案.【题目详解】解:数据0,,8,1,的众数是,,,,故答案为:13.1.【题目点拨】此题主要考查了方差以及众数的定义,正确记忆方差的定义是解题关键.18、45【解题分析】

由平行四边形的性质得出∠B+∠C=180°,由已知条件得出∠C=3∠B,得出∠B+3∠B=180°,得出∠B=45°即可.【题目详解】解:如图所示:

∵四边形ABCD是平行四边形,

∴AB∥CD,

∴∠B+∠C=180°,

∵∠B:∠C=1:3,

∴∠C=3∠B,

∴∠B+4∠B=180°,

解得:∠B=45°,

故答案为:45°.【题目点拨】本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.三、解答题(共78分)19、x=–2【解题分析】试题分析:根据分式方程的解法即可求出答案.试题解析:解:去分母得:(x+3)2﹣4(x﹣3)=(x﹣3)(x+3)x2+6x+9﹣4x+12=x2﹣9,x=﹣2.把x=﹣2代入(x﹣3)(x+3)≠0,∴原分式方程的解为:x=﹣2.20、(1)G点的坐标为:(3,4-);(2)EF的解析式为:y=x+4-2;(3)P1(1,4-)、P2(,7-2),P3(-,2-1)、P4(3,4+)【解题分析】分析:(1)点G的横坐标与点N的横坐标相同,易得EM为BC的一半减去1,为1,EG=CE=2,利用勾股定理可得MG的长度,4减MG的长度即为点G的纵坐标;(2)由△EMG的各边长可得∠MEG的度数为60°,进而可求得∠CEF的度数,利用相应的三角函数可求得CF长,4减去CF长即为点F的纵坐标,设出直线解析式,把E,F坐标代入即可求得相应的解析式;(3)以点F为圆心,FG为半径画弧,交直线EF于两点;以点G为圆心,FG为半径画弧,交直线EF于一点;做FG的垂直平分线交直线EF于一点,根据线段的长度和与坐标轴的夹角可得相应坐标.详解:(1)易得EM=1,CE=2,∵EG=CE=2,∴MG=,∴GN=4-;G点的坐标为:(3,4-);(2)易得∠MEG的度数为60°,∵∠CEF=∠FEG,∴∠CEF=60°,∴CF=2,∴OF=4-2,∴点F(0,4-2).设EF的解析式为y=kx+4-2,易得点E的坐标为(2,4),把点E的坐标代入可得k=,∴EF的解析式为:y=x+4-2.(3)P1(1,4-)、P2(,7-2),P3(-,2-1)、P4(3,4+)点睛:本题综合考查了折叠问题和相应的三角函数知识,难点是得到关键点的坐标;注意等腰三角形的两边相等有多种不同的情况.21、(1)4(2)1【解题分析】

(1)在直角三角形ABC中,利用勾股定理即可求出AC的长;(2)首先求出CD的长,利用勾股定理可求出CE的长,进而得到BE=CE-CB的值.【题目详解】(1)在Rt△ABC中,由勾股定理得AC2+CB2=AB2,即AC2+32=52,所以AC=4(m),即这个梯子的顶端A到地面的距离AC为4m;(2)DC=4-1=3(m),DE=5=m,在Rt△DCE中,由勾股定理得DC2+CE2=DE2,即32+CE2=52,所以CE=5(m),BE=CE-CB=4-3=1(m),即梯子的底端B在水平方向滑动了1m.【题目点拨】本题考查了勾股定理在实际生活中的应用,本题中根据梯子长不会变这一关系进行求解是解题的关键.22、(1);(2);(3)见解析【解题分析】

(1)当时,由于轴,所以点的横坐标也为-6,将点的横坐标代入反比例函数解析式即可求得点的坐标,利用两点间的距离公式即可求得的长;(2)根据轴.可以得到点和点的纵坐标相同,由此根据反比例函数解析式即可求得点的坐标,所以的长度可以求出,再结合,求出点的坐标;(3)分别延长交轴于点,延长交轴于点,根据轴,轴,可以证得四边形为矩形,所以,而根据反比例函数的性质可得,所以,利用面积关系即可得到,从而得到证明;【题目详解】解:(1)∵轴,∴点、的横坐标相等.∴点的坐标.∴.(2)∵轴,∴点、的纵坐标相等,∴点的坐标.∴.∴点.(3)延长交轴于点,延长交轴于点,连接.∴轴,轴,∴四边形为平行四边形.又∵,∴平行四边形为矩形.∴.又,∵.又∵,,∴.∴.【题目点拨】本题主要考查反比例函数的面积关系,熟练掌握反比例函数中的几何意义是解决本题的关键,难度中等,需要仔细分析图形.23、(1)见解析;(2)见解析.【解题分析】

(1)由折叠得到D=∠FGH=90°,∠C=∠H=90°,EC=EH,由矩形得出边平行,内角为直角,将问题转化到△EGH中,由30°所对的直角边等于斜边的一半,利用等量代换可得结论;

(2)由轴对称的性质,对称轴垂直平分对应点所连接的线段,垂直于同一直线的两条直线互相平行得出结论.【题目详解】证明:(1)由折叠知:CE=HE,在矩形ABCD中,AD//BC,∴∠AFG=∠FGE=∴∠HGE=∠FGH-∠FGE=在RtΔGHE中,∠HGE=∴HE=又∵CE=HE,∴CE=12(2)连接DG、CH由折叠知:点D和G、点C和点H都关于直线EF成轴对称∴EF⊥DG,∴DG//CH【题目点拨】考查矩形的性质、轴对称的性质,直角三角形的性质等知识,合理的将问题转化到一个含有30°的直角三角形是解决问题的关键.24、(1)图略(1)向右平移10个单位,再向下平移一个单位.(答案不唯一)【解题分析】(1)D不变,以D为旋转中心,顺时针旋转90°得到关键点A,C,B的对应点即可;(1)最简单的是以C′D′的为对称轴得到的图形,应看先向右平移几个单位,向下平移几个单位.25、(1)反比例函数解析式为;一次函数解析式为;(2)1;(3)或.【解题分析】

(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论