




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省东台市第二联盟2024届数学八年级第二学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.小华用火柴棒摆直角三角形,已知他摆两条直角边分别用了6根和8根火柴棒,则他摆完这个直角三角形共用火柴棒()A.25根 B.24根 C.23根 D.22根2.下列分式中,是最简分式的是A. B. C. D.3.下列方程中,属于一元二次方程的是()A. B. C. D.4.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y35.某校对八年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):4、4、3.5、5、5、4,这组数据的众数是()A.4 B.3.5 C.5 D.36.用配方法解一元二次方程时,此方程配方后可化为()A. B. C. D.7.一天李师傅骑车上班途中因车发生故除,修车耽误了一段时间后继续骑行,按时赶到了单位,如图描述了他上班途中的情景,下列说法中错误的是()A.李师傅上班处距他家200米B.李师傅路上耗时20分钟C.修车后李师傅骑车速度是修车前的2倍D.李师傅修车用了5分钟8.等于()A.2 B.0 C. D.-20199.如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1 B.2 C.3 D.410.弹簧挂上物体后伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:下列说法错误的是()物体的质量(kg)012345弹簧的长度(cm)1012.51517.52022.5A.在没挂物体时,弹簧的长度为10cmB.弹簧的长度随物体的质量的变化而变化,物体的质量是因变量,弹簧的长度是自变量C.如果物体的质量为mkg,那么弹簧的长度ycm可以表示为y=2.5m+10D.在弹簧能承受的范围内,当物体的质量为4kg时,弹簧的长度为20cm二、填空题(每小题3分,共24分)11.若点A(2,m)在平面直角坐标系的x轴上,则点P(m-1,m+3)到原点O的距离为_____.12.如图所示,在四边形中,,分别是的中点,,则的长是___________.13.△ABC中,已知:∠C=90°,AB=17,BC=8,则AC=_____.14.若A(x1,y1)和B(x2,y2)在反比例函数的图象上,且0<x1<x2,则y1与y2的大小关系是y1y2;15.若分式方程有增根x=2,则a=___.16.若,,则的值是__________.17.如图,数轴上点O对应的数是0,点A对应的数是3,AB⊥OA,垂足为A,且AB=2,以原点O为圆心,以OB为半径画弧,弧与数轴的交点为点C,则点C表示的数为_____.18.式子有意义的条件是__________.三、解答题(共66分)19.(10分)如图(1),折叠平行四边形,使得分别落在边上的点,为折痕(1)若,证明:平行四边形是菱形;(2)若,求的大小;(3)如图(2),以为邻边作平行四边形,若,求的大小20.(6分)计算:(1)-|5-|+;(2)-(2+)221.(6分)如图,△ABC中,AB=10,BC=6,AC=8.(1)求证:△ABC是直角三角形;(2)若D是AC的中点,求BD的长.(结果保留根号)22.(8分)树叶有关的问题如图,一片树叶的长是指沿叶脉方向量出的最长部分的长度(不含叶柄),树叶的宽是指沿与主叶脉垂直方向量出的最宽处的长度,树叶的长宽比是指树叶的长与树叶的宽的比值。某同学在校园内随机收集了A树、B树、C树三棵的树叶各10片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据,计算长宽比,理如下:表1A树、B树、C树树叶的长宽比统计表12345678910A树树叶的长宽比4.04.95.24.15.78.57.96.37.77.9B树树叶的长宽比2.52.42.22.32.01.92.32.01.92.0C树树叶的长宽比1.11.21.20.91.01.01.10.91.01.3表1A树、B树、C树树叶的长宽比的平均数、中位数、众数、方差统计表平均数中位数众数方差A树树叶的长宽比6.26.07.92.5B树树叶的长宽比2.20.38C树树叶的长宽比1.11.11.00.02A树、B树、C树树叶的长随变化的情况解决下列问题:(1)将表2补充完整;(2)①小张同学说:“根据以上信息,我能判断C树树叶的长、宽近似相等。”②小李同学说:“从树叶的长宽比的平均数来看,我认为,下图的树叶是B树的树叶。”请你判断上面两位同学的说法中,谁的说法是合理的,谁的说法是不合理的,并给出你的理由;(3)现有一片长103cm,宽52cm的树叶,请将该树叶的数用“★”表示在图1中,判断这片树叶更可能来自于A、B、C中的哪棵树?并给出你的理由。23.(8分)如图,在平行四边形ABCD中,BE平分∠ABC交CD的延长线于点E,作CF⊥BE于F.(1)求证:BF=EF;(2)若AB=8,DE=4,求平行四边形ABCD的周长.24.(8分)为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?25.(10分)先化简,再求值:,其中x=﹣2+.26.(10分)如图,直线y=-34x+6分别与x轴、y轴交于A、B两点:直线y=54x与AB于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的进度沿x轴向左运动.过点E作x轴的垂线,分別交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠的图形的周长为L个单位长度,点E的运动时间为(1)直接写出点C和点A的坐标.(2)若四边形OBQP为平行四边形,求t的值.(3)0<t<5时,求L与t之间的函数解析式.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】
根据勾股定理即可求得斜边需要的火柴棒的数量.再由三角形的周长公式来求摆完这个直角三角形共用火柴棒的数量【题目详解】∵两直角边分别用了6根、8根长度相同的火柴棒∴由勾股定理,得到斜边需用:(根),∴他摆完这个直角三角形共用火柴棒是:6+8+10=24(根).故选B.【题目点拨】本题考查勾股定理的应用,是基础知识比较简单.2、D【解题分析】
最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【题目详解】A、=,错误;B、=,错误;C、=,错误;D、是最简分式,正确.故选D.【题目点拨】此题考查最简分式问题,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.3、B【解题分析】
利用一元二次方程的定义对选项进行判断即可.【题目详解】解:A、2x﹣1=3x是一元一次方程,不符合题意;B、x2=4是一元二次方程,符合题意;C、x2+3y+1=0是二元二次方程,不符合题意;D、x3+1=x是一元三次方程,不符合题意,故选:B.【题目点拨】此题考查一元二次方程的定义,熟练掌握方程的定义是解本题的关键.4、D【解题分析】
先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.【题目详解】∵反比例函数y=中,k=1>0,∴此函数图象的两个分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,点C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y随x的增大而减小,∴y1>y2,∴y2<y1<y1.故选D.【题目点拨】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.5、A【解题分析】
一组数据中出现次数最多的数据叫做众数,依此求解即可.【题目详解】在这一组数据中4出现了3次,次数最多,故众数是4.故选:A.【题目点拨】考查众数的概念,掌握众数的概念是解题的关键.6、A【解题分析】【分析】按照配方法的步骤进行求解即可得答案.【题目详解】2x2-6x+1=0,2x2-6x=-1,x2-3x=,x2-3x+=+(x-)2=,故选A.【题目点拨】本题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.7、A【解题分析】
观察图象,明确每一段小明行驶的路程,时间,作出判断.【题目详解】A.李师傅上班处距他家2000米,此选项错误;B.李师傅路上耗时20分钟,此选项正确;C.修车后李师傅骑车速度是2000-100020-15=200米/分钟,修车前速度为100010=100米/分钟,∴修车后李师傅骑车速度是修车前的2倍,D.李师傅修车用了5分钟,此选项正确.故选A.【题目点拨】本题考查了学生从图象中读取信息的能力,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.8、C【解题分析】
根据0指数幂和负整数指数幂的运算法则计算即可得答案.【题目详解】=1×=,故选:C.【题目点拨】本题考查0指数幂及负整数指数幂,任何不为0的数的0次幂都等于1,熟练掌握运算法则是解题关键.9、D【解题分析】【分析】过点C作轴,设点,则得到点C的坐标,根据的面积为1,得到的关系式,即可求出的值.【解答】过点C作轴,设点,则
得到点C的坐标为:的面积为1,即故选D.【点评】考查反比例函数图象上点的坐标特征,掌握待定系数法是解题的关键.10、B【解题分析】
因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m,质量为mkg,y弹簧长度;弹簧的长度有一定范围,不能超过.【题目详解】解:A.在没挂物体时,弹簧的长度为10cm,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;B、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;C、当物体的质量为mkg时,弹簧的长度是y=12+2.5m,故此选项正确,不符合题意;D、由C中y=10+2.5m,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意;故选B.点评:此题考查了函数关系式,主要考查了函数的定义和结合几何图形列函数关系式.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.二、填空题(每小题3分,共24分)11、【解题分析】
首先根据x轴上的点纵坐标为0得出m的值,再根据勾股定理即可求解.【题目详解】解:∵点A(2,m)在直角坐标系的x轴上,∴m=0,∴点P(m-1,m+3),即(-1,3)到原点O的距离为.故答案为:.【题目点拨】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.求出m的值是解题的关键.12、【解题分析】
根据中位线定理和已知,易证明△PMN是等腰三角形,根据等腰三角形的性质和已知条件即可求出∠PMN的度数为30°,通过构造直角三角形求出MN.【题目详解】解:∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,
∴PN,PM分别是△CDB与△DAB的中位线,
∴PM=AB=2,PN=DC=2,PM∥AB,PN∥DC,
∵AB=CD,
∴PM=PN,
∴△PMN是等腰三角形,
∵PM∥AB,PN∥DC,
∴∠MPD=∠ABD=20°,∠BPN=∠BDC=80°,
∴∠MPN=∠MPD+∠NPD=20°+(180-80)°=120°,
∴∠PMN==30°.过P点作PH⊥MN,交MN于点H.∵HQ⊥MN,
∴HQ平分∠MHN,NH=HM.
∵MP=2,∠PMN=30°,
∴MH=PM•cos60°=,
∴MN=2MH=2.【题目点拨】本题考查了三角形中位线定理及等腰三角形的判定和性质、30°直角三角形性质,解题时要善于根据已知信息,确定应用的知识.13、15【解题分析】
根据勾股定理即可算出结果.【题目详解】在△ABC中,∠C=90°,AB=17,BC=8,所以AC=故答案为:15【题目点拨】本题考查了勾股定理,掌握勾股定理:在直角三角形中两条直角边的平方和等于斜边的平方,是解题的关键.14、>;【解题分析】试题解析:∵反比例函数中,系数∴反比例函数在每个象限内,随的增大而减小,∴当时,故答案为15、﹣2.【解题分析】
先化简分式方程,再根据分式方程有增根的条件代入方程,最后求出方程的解即可.【题目详解】去分母得:x+2+ax=3x﹣6,把x=2代入得:4+2a=0,解得:a=﹣2,故答案为:﹣2.【题目点拨】此题考查分式方程的解,解题关键在于掌握运算法则16、2【解题分析】
提取公因式因式分解后整体代入即可求解.【题目详解】.故答案为:2.【题目点拨】此题考查因式分解的应用,解题关键在于分解因式.17、【解题分析】
首先利用勾股定理计算出OB的长,然后再由题意可得BO=CO,进而可得CO的长.【题目详解】∵数轴上点A对应的数为3,∴AO=3,∵AB⊥OA于A,且AB=2,∴BO===,∵以原点O为圆心,OB为半径画弧,交数轴于点C,∴OC的长为,故答案为:.【题目点拨】此题主要考查了实数与数轴,勾股定理,关键是利用勾股定理计算出BO的长.18、且【解题分析】
式子有意义,则x-2≥0,x-3≠0,解出x的范围即可.【题目详解】式子有意义,则x-2≥0,x-3≠0,解得:,,故答案为且.【题目点拨】此题考查二次根式及分式有意义,熟练掌握二次根式的被开方数大于等于0,分式的分母不为0,及解不等式是解决本题的关键.三、解答题(共66分)19、(1)详见解析;(2)30°;(3)45°.【解题分析】
(1)利用面积法解决问题即可.(2)分别求出∠BAD,∠BAB′,∠DAD′即可解决问题.(3)如图2中,延长AE到H,使得EH=EA,连接CH,HG,EF,AC.想办法证明E,H,G,C四点共圆,可得∠EGC=∠EHC=45°.【题目详解】(1)证明:如图1中,∵四边形ABCD是平行四边形,AE⊥BC,AF⊥CD,∴S平行四边形ABCD=BC•AE=CD•AF,∵AE=AF,∴BC=CD,∴平行四边形是菱形;(2)解:如图1中,∵四边形ABCD是平行四边形,∴∠C=∠BAD=110°,∵AB∥CD,∴∠C+∠B=180°,∴∠B=∠D=70°,∵AE⊥BC,AF⊥CD.∴∠AEB=∠AFD=90°,∴∠BAE=∠DAF=20°,由翻折变换的性质可知:∠BAB′=2∠BAE=40°,∠DAD′=2∠DAF=40°,∴∠B′AD′=110°﹣80°=30°.(3)解:如图2中,延长AE到H,使得EH=EA,连接CH,HG,EF,AC.∵EA=EC,∠AEC=90°,∴∠ACE=45°,∵∠AEC+∠AFC=180°,∴A,B,C,F四点共圆,∴∠AFE=∠ACE=45°,∵四边形AEGF是平行四边形,∴AF∥EG,AE=FG,∴∠AFE=∠FEG=45°,∴EH=AE=FG,EH∥FG,∴四边形EHGF是平行四边形,∴EF∥HG,∴∠FEG=∠EGH=45°∵EC=AE=EH,∠CEH=90°,∴∠ECH=∠EHC=45°,∴∠ECH=∠EGH,∴E,H,G,C四点共圆,∠EGC=∠EHC=45°.【题目点拨】本题属于几何变换综合题,考查了平行四边形的性质和判定,菱形的判定,翻折变换,四点共圆,圆周角定理等知识,解题的关键是学会添加常用辅助线,利用四点共圆解决问题,属于中考压轴题.20、(1)13+4;(2)-1.【解题分析】
(1)先把二次根式化简,然后去绝对值后合并即可;
(2)利用分母有理化和完全平方公式计算.【题目详解】解:(1)原式=3-(5-)+18
=3-5++18
=13+4;
(2)原式=4-(4+4+3)
=4-1-4
=-1.故答案为:(1)13+4;(2)-1.【题目点拨】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.21、(1)见解析;(2)2.【解题分析】分析:(1)直接根据勾股定理逆定理判断即可;(2)先由D是AC的中点求出CD的长,然后利用勾股定理求BD的长即可.详解:(1)∵AB2=100,BC2=36,AC2=64,∴AB2=BC2+AC2,∴△ABC是直角三角形.(2)CD=4,在Rt△BCD中,BD=.点睛:本题考查了勾股定理及其逆定理的应用,勾股定理是:直角三角形两条直角边的平方和等于斜边的平方;勾股定理逆定理是:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.22、(1)2.1,2.0;(2)小张同学的说法是合理的,小李学同的说法是不合理;(3)B树;【解题分析】
(1)根据中位数和众数的定义,由表中的数据求出B树树叶的长宽比的中位数和众数即可;(2)根据表中数据,求出C树树叶的长宽比的近似值,从而判断小张的说法,根据所给树叶的长宽比,判断小李的说法即可;(3)根据树叶的长和宽在图中用★标出该树叶,根据树叶的长宽比判断该树叶来自哪棵树即可.【题目详解】解(1)将这10片B树树叶的长宽比从小到大排列为:1.9,1.9,2.0,2.0,2.0,2.2,2.3,2.3,2.4,2.5,处在中间位置的两个数为2.0,2.2,∴中位数为(2.0+2.2)÷2=2.1;∵2.0出现了3次,出现的次数最多,∴众数为2.0.平均数中位数众数方差A树树叶的长宽比B树树叶的长宽比2.12.0C树树叶的长宽比(2)小张同学的说法是合理的,小李同学的说法是不合理的.理由如下:由表中的数据可知C树叶的长宽比近似于1,故小张的说法正确;由树叶的长度和宽度可知该树叶的长宽比近似于6,所以该树叶是A树的树叶,故小李的说法错误;(3)图1中,★表示这片树叶的数据,这片树叶来自B树;这块树叶的长宽比为103:52≈2,所以这片树叶来自B树.【题目点拨】本题主要考查了统计表的应用,平均数,中位数,众数,方差,用样本估计总体,熟练掌握中位数和众数的定义是解决此题的关键.23、(1)证明见解析;(2)1.【解题分析】
(1)只要证明CB=CE,利用等腰三角形的三线合一的性质即可解决问题;(2)根据CE=CB,求出BC的长即可解决问题.【题目详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CE,∴∠E=∠ABE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠E=∠CBE,∴CB=CE,∵CF⊥BE,∴BF=EF.(2)∵四边形ABCD是平行四边形,∴AB=CD=8,∵DE=4,∴BC=CE=12,∴平行四边形ABCD的周长为2(AB+BC)=1.【题目点拨】本题考查平行四边形的性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.24、(1)篮球和排球的单价分别是96元、64元.(2)共有三种购买方案:①购买篮球26个,排球10个;②购买篮球27个,排球
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 煤焦油销售合同10篇
- 过桥借款简单的合同范本(2025版)
- 设备保修服务合同范本(2025版)
- 驾校土地租赁合同范本(2025版)
- 铁精粉购销合同文档(2025版)
- 退休人员返聘劳务合同(2025版)
- 违纪学生合同协议书范本(2025版)
- 酒店租赁合同范本(2025版)
- 瓷砖采购合同样本
- 浙江省稽阳联谊学校2025年4月高三联考数学试卷(含答案)
- 光伏工程施工安全方案
- 声乐课课件教学
- 保密法实施条例培训
- 泰山产业领军人才申报书
- GB/T 44395-2024激光雷达测风数据可靠性评价技术规范
- 2024年四川成都市成华区“蓉漂人才荟”事业单位招聘高层次人才历年高频500题难、易错点模拟试题附带答案详解
- 2024年浙江省金华市东阳市横店镇三校中考二模道德与法治试题(原卷版)
- 杭州市上城区政务服务中心招聘笔试真题2022
- 中华联合保险集团股份有限公司行测笔试题库2024
- 幼儿园中班社会活动《城市美容师》课件
- 地球的形状与内部结构30张省公开课一等奖新名师比赛一等奖课件
评论
0/150
提交评论