河北省沙河市2023年数学九上期末联考试题含解析_第1页
河北省沙河市2023年数学九上期末联考试题含解析_第2页
河北省沙河市2023年数学九上期末联考试题含解析_第3页
河北省沙河市2023年数学九上期末联考试题含解析_第4页
河北省沙河市2023年数学九上期末联考试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省沙河市2023年数学九上期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.函数y=与y=-kx2+k(k≠0)在同一直角坐标系中的图象可能是(

)A. B. C. D.2.如图,轴右侧一组平行于轴的直线···,两条相邻平行线之间的距离均为,以点为圆心,分别以···为半径画弧,分别交轴,···于点···则点的坐标为()A. B.C. D.3.将抛物线y=﹣3x2先向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是()A.y=﹣3(x﹣1)2﹣2 B.y=﹣3(x﹣1)2+2C.y=﹣3(x+1)2﹣2 D.y=﹣3(x+1)2+24.关于的方程的根的情况,正确的是().A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根5.如图,为的直径,为上两点,若,则的大小为().A.60° B.50° C.40° D.20°6.(2015重庆市)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C. D.7.将二次函数的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为()A. B.C. D.8.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是()A.△ABC是等腰三角形B.△ABC是等腰直角三角形C.△ABC是直角三角形D.△ABC是等边三角形9.如图,在△ABC中,点D、E分别在AB、AC边上,DE与BC不平行,那么下列条件中,不能判断△ADE∽△ACB的是()A.∠ADE=∠C B.∠AED=∠B C. D.10.如图,在纸上剪一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径r=1,扇形的半径为R,扇形的圆心角等于90°,则R的值是()A.R=2 B.R=3 C.R=4 D.R=5二、填空题(每小题3分,共24分)11.已知函数(为常数),若从中任取值,则得到的函数是具有性质“随增加而减小”的一次函数的概率为___________.12.中,若,,,则的面积为________.13.如图,原点O为平行四边形A.BCD的对角线A.C的中点,顶点A,B,C,D的坐标分别为(4,2),(,b),(m,n),(-3,2).则(m+n)(+b)=__________.14.如图,请补充一个条件_________:,使△ACB∽△ADE.15.如图,PA与⊙O相切于点A,AB是⊙O的直径,在⊙O上存在一点C满足PA=PC,连结PB、AC相交于点F,且∠APB=3∠BPC,则=_____.16.如图,AB是⊙O的直径,且AB=6,弦CD⊥AB交AB于点P,直线AC,DB交于点E,若AC:CE=1:2,则OP=_____.17.分解因式:=____________.18.如图,在平面直角坐标系中,直线l:与坐标轴分别交于A,B两点,点C在x正半轴上,且OC=OB.点P为线段AB(不含端点)上一动点,将线段OP绕点O顺时针旋转90°得线段OQ,连接CQ,则线段CQ的最小值为___________.三、解答题(共66分)19.(10分)解方程:(1);(2)20.(6分)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?21.(6分)先化简,再从中取一个恰当的整数代入求值.22.(8分)如图,二次函数y=x2+bx+c的图象过点B(0,1)和C(4,3)两点,与x轴交于点D、点E,过点B和点C的直线与x轴交于点A.(1)求二次函数的解析式;(2)在x轴上有一动点P,随着点P的移动,存在点P使△PBC是直角三角形,请你求出点P的坐标;(3)若动点P从A点出发,在x轴上沿x轴正方向以每秒2个单位的速度运动,同时动点Q也从A点出发,以每秒a个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD相似?若存在,直接写出a的值;若不存在,说明理由.23.(8分)在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.(1)当四边形ABCD是矩形时,如图1,请猜想AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(2)当四边形ABCD是平行四边形时,如图2,已知AC=kBD,请猜想此时AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(3)当四边形ABCD是等腰梯形时,如图3,AD∥BC,此时(1)AC′与BD′的数量关系是否成立?∠AMB与α的大小关系是否成立?不必证明,直接写出结论.24.(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形.的顶点均在格点上,建立平面直角坐标系后,点的坐标为,点的坐标为.(1)先将向右平移5个单位,再向下平移1个单位后得到.试在图中画出图形,并写出的坐标;(2)将绕点顺时针旋转后得到,试在图中画出图形.并计算在该旋转过程中扫过部分的面积.25.(10分)小明家今年种植的草莓喜获丰收,采摘上市20天全部销售完,爸爸让他对今年的销售情况进行跟踪记录,小明利用所学的数学知识将记录情况绘成图象(所得图象均为线段),日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,草莓的销售价p(单位:元/千克)与上市时间x(单位:天)的函数关系如图2所示设第x天的日销售额为w(单位:元)(1)第11天的日销售额w为元;(2)观察图象,求当16≤x≤20时,日销售额w与上市时间x之间的函数关系式及w的最大值;(3)若上市第15天时,爸爸把当天能销售的草莓批发给了邻居马叔叔,批发价为每千克15元,马叔叔到市场按照当日的销售价p元千克将批发来的草莓全部售完,他在销售的过程中,草莓总质量损耗了2%.那么,马叔叔支付完来回车费20元后,当天能赚到多少元?26.(10分)已知关于的方程;(1)当为何值时,方程有两个不相等的实数根;(2)若为满足(1)的最小正整数,求此时方程的两个根,.

参考答案一、选择题(每小题3分,共30分)1、B【分析】先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致,由此即可解答.【详解】由解析式y=-kx2+k可得:抛物线对称轴x=0;选项A,由双曲线的两支分别位于二、四象限,可得k<0,则-k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,选项A错误;选项B,由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,选项B正确;选项C,由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,选项C错误;选项D,由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,选项D错误.故选B.【点睛】本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.2、C【分析】根据题意,利用勾股定理求出,,,,的纵坐标,得到各点坐标,找到规律即可解答.【详解】如图,连接、、,点的纵坐标为,点的坐标为,点的纵坐标为,点的坐标为,点的纵坐标为,点的坐标为,点的纵坐标为,点的坐标为,∴点的坐标为,故选:C【点睛】本题考查了一次函数图象上点的坐标特征,熟练运用勾股定理是解题的关键.3、C【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=﹣3x1向左平移1个单位所得直线解析式为:y=﹣3(x+1)1;再向下平移1个单位为:y=﹣3(x+1)1﹣1,即y=﹣3(x+1)1﹣1.故选C.【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.4、A【分析】根据一元二次方程根的判别式,即可得到方程根的情况.【详解】解:∵,∴,∴原方程有两个不相等的实数根;故选择:A.【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式.5、B【分析】根据题意连接AD,再根据同弧的圆周角相等,即可计算的的大小.【详解】解:连接,∵为的直径,∴.∵,∴,∴.故选B.【点睛】本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.6、D【解析】试题解析:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=4,故选D.考点:1.菱形的性质;2.反比例函数图象上点的坐标特征.7、B【分析】根据题意直接利用二次函数平移规律进而判断得出选项.【详解】解:的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:.故选:B.【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8、B【分析】先根据特殊角的三角函数值求出∠A,∠B的值,再根据三角形内角和定理求出∠C即可判断三角形的形状。【详解】∵tanA=1,sinB=,∴∠A=45°,∠B=45°.∴AC=BC又∵三角形内角和为180°,∴∠C=90°.∴△ABC是等腰直角三角形.故选:B.【点睛】本题考查了特殊角的三角函数值,解答此题的关键是熟记特殊角的三角函数值.需要注意等角对等边判定等腰三角形。9、C【解析】根据已知条件知∠A=∠A,再添加选项中的条件依次判断即可得到答案.【详解】解:∵∠A=∠A,∴添加∠ADE=∠C,△ADE∽△ACB,故A正确;∴添加∠AED=∠B,△ADE∽△ACB,故B正确;∴添加,△ADE∽△ACB,故D正确;故选:C.【点睛】此题考查相似三角形的判定定理,已知一个角相等时,再确定另一组角相等或是构成已知角的两边对应成比例,即可证明两个三角形相似.10、C【分析】利用圆锥的底面周长等于侧面展开图的扇形弧长,根据弧长公式计算.【详解】解:扇形的弧长是:=,圆的半径r=1,则底面圆的周长是2π,圆锥的底面周长等于侧面展开图的扇形弧长则得到:=2π,∴=2,即:R=4,故选C.【点睛】本题主要考查圆锥底面周长与展开扇形弧长关系,解决本题的关键是要熟练掌握圆锥底面周长与展开扇形之间关系.二、填空题(每小题3分,共24分)11、【分析】根据“随增加而减小”可知,解出k的取值范围,然后根据概率公式求解即可.【详解】由“随增加而减小”得,解得,∴具有性质“随增加而减小”的一次函数的概率为故答案为:.【点睛】本题考查了一次函数的增减性,以及概率的计算,熟练掌握一次函数增减性与系数的关系和概率公式是解题的关键.12、【分析】过点A作BC边上的高交BC的延长线于点D,在中,利用三角函数求出AD长,再根据三角形面积公式求解即可.【详解】解:如图,作于点D,则,在中,所以的面积为故答案为:.【点睛】本题主要考查了三角函数,灵活添加辅助线利用三角函数求出三角形的高是解题的关键.13、-6【分析】易知点A与点C关于原点O中心对称,由平行四边形的性质可知点B和点D关于原点O对称,根据关于原点对称横纵坐标都互为相反数可得点B、点C坐标,求解即可.【详解】解:根据题意得点A与点C关于原点O中心对称,点B和点D关于原点O对称故答案为:【点睛】本题考查了平面直角坐标系中的中心对称,正确理解题意是解题的关键.14、∠ADE=∠C或∠AED=∠B或【分析】由∠A是公共角,且DE与BC不平行,可得当∠ADE=∠C或∠AED=∠B或时,△ADE∽△ACB.【详解】①补充∠ADE=∠C,理由是:∵∠A是公共角,∠ADE=∠C,

∴△ADE∽△ACB.故答案为:∠ADE=∠C.②补充∠AED=∠B,理由是:∵A是公共角,∠AED=∠B,

∴△ADE∽△ACB.

③补充,理由是:∵∠A是公共角,,

∴△ADE∽△ACB.故答案为:∠ADE=∠C或∠AED=∠B或【点睛】本题考查了相似三角形的判定与性质.注意掌握判定定理的应用,注意掌握数形结合思想的应用.15、.【分析】连接OP,OC,证明△OAP≌△OCP,可得PC与⊙O相切于点C,证明BC=CP,设OM=x,则BC=CP=AP=2x,PM=y,证得△AMP∽△OAP,可得:,证明△PMF∽△BCF,由可得出答案.【详解】解:连接OP,OC.∵PA与⊙O相切于点A,PA=PC,∴∠OAP=90°,∵OA=OC,OP=OP,∴△OAP≌△OCP(SSS),∴∠OAP=∠OCP=90°,∴PC与⊙O相切于点C,∵∠APB=3∠BPC,∠APO=∠CPO,∴∠CPB=∠OPB,∵AB是⊙O的直径,∴∠BCA=90°,∵OP⊥AC,∴OP∥BC,∴∠CBP=∠CPB,∴BC=CP=AP.∵OA=OB,∴OM=.设OM=x,则BC=CP=AP=2x,PM=y,∵∠OAP=∠AMP=90°,∠MPA=∠APO,∴△AMP∽△OAP,∴.∴AP2=PM•OP,∴(2x)2=y(y+x),解得:,(舍去).∵PM∥BC,∴△PMF∽△BCF,∴=.故答案为:.【点睛】本题考查了切线的判定与性质,等腰三角形的判定与性质,相似三角形的判定与性质,圆周角定理.正确作出辅助线,熟练掌握相似三角形的判定与性质是解题的关键.16、1.【分析】过点E作EF⊥AB于点F,证明△ACP∽△AEF以及△PBD∽△FBE,设PB=x,然后利用相似三角形的性质即可求出答案.【详解】过点E作EF⊥AB于点F,∵CP⊥AB,AC:CE=1:2,∴CP∥EF,AC:AE=1:3,∴△ACP∽△AEF,∴,∵PD∥EF,∴△PBD∽△FBE,∴,∵PC=PD,∴,设PB=x,BF=3x,∴AP=6﹣x,AF=6+3x,∴,解得:x=2,∴PB=2,∴OP=1,故答案为:1.【点睛】本题考查了圆中的计算问题,熟练掌握垂径定理,相似三角形的判定与性质是解题的关键.17、【解析】分析:利用平方差公式直接分解即可求得答案.解答:解:a2-b2=(a+b)(a-b).故答案为(a+b)(a-b).18、【分析】在OA上取使,得,则,根据点到直线的距离垂线段最短可知当⊥AB时,CP最小,由相似求出的最小值即可.【详解】解:如图,在OA上取使,∵,∴,在△和△QOC中,,∴△≌△QOC(SAS),∴∴当最小时,QC最小,过点作⊥AB,∵直线l:与坐标轴分别交于A,B两点,∴A坐标为:(0,8);B点(-4,0),∵,∴,.∵,∴,∴,∴线段CQ的最小值为.故答案为:.【点睛】本题主要考查了一次函数图像与坐标轴的交点及三角形全等的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.三、解答题(共66分)19、(1),;(2),.【分析】(1)运用公式法解方程即可;(2)运用因式分解法解方程即可.【详解】(1)∵,∴,∴,;(2)移项,得:,提公因式得:,∴或,∴,;【点睛】本题主要考查解一元二次方程-公式法和因式分解法,能把一元二次方程转化成一元一次方程是解此题的关键.20、(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是1元.【解析】分析:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据数量=总价÷单价结合第二批购进数量是第一批数量的1.5倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每套悠悠球的售价为y元,根据销售收入-成本=利润结合全部售完后总利润不低于25%,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.详解:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据题意得:,解得:x=25,经检验,x=25是原分式方程的解.答:第一批悠悠球每套的进价是25元.(2)设每套悠悠球的售价为y元,根据题意得:500÷25×(1+1.5)y-500-900≥(500+900)×25%,解得:y≥1.答:每套悠悠球的售价至少是1元.点睛:本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程是解题的关键;(2)根据各数量之间的关系,正确列出一元一次不等式.21、,0【分析】根据分式的混合运算法则进行计算化简,再代入符合条件的x值进行计算.【详解】解:原式====又∵且,,∴整数.∴原式=.【点睛】考核知识点:分式的化简求值.掌握分式的基本运算法则是关键.22、(1)抛物线解析式y=x2–x+1;(2)点P坐标为(1,0),(3,0),(,0),(,0);(3)a=或.【分析】(1)将B、C两点坐标代入二次函数解析式,通过联立方程组可求得b、c的值,进而求出函数解析式;(2)设P(x,0),由△PBC是直角三角形,分∠CBP=90°与∠BPC=90°两种情况讨论,运用勾股定理可得x的值,进而得到P点坐标;(3)假设成立有△APQ∽△ADB或△APQ∽△ABD,则对应边成比例,可求出a的值.【详解】(1)∵二次函数y=0.5x2+bx+c的图象过点B(0,1)和C(4,3)两点,∴,解得,∴抛物线解析式y=x2–x+1.(2)设点P坐标为(x,0).∵点P(x,0),点B(0,1),点C(4,3),∴PB==,CP==,BC==2,若∠BCP=90°,则BP2=BC2+CP2.∴x2+1=20+x2–8x+25,∴x=.若∠CBP=90°,则CP2=BC2+BP2.∴x2+1+20=x2–8x+25,∴x=.若∠BPC=90°,则BC2=BP2+CP2.∴x2+1+x2–8x+25=20,∴x1=1,x2=3,综上所述:点P坐标为(1,0),(3,0),(,0),(,0).(3)a=或.∵抛物线解析式y=x2–x+1与x轴交于点D,点E,∴0=x2–x+1,∴x1=1,x2=2,∴点D(1,0).∵点B(0,1),C(4,3),∴直线BC解析式y=x+1.当y=0时,x=–2,∴点A(–2,0).∵点A(–2,0),点B(0,1),点D(1,0),∴AD=3,AB=.设经过t秒,∴AP=2t,AQ=at,若△APQ∽△ADB,∴,即,∴a=,若△APQ∽△ABD,∴,即,∴a=.综上所述:a=或.【点睛】此题考查了二次函数解析式的确定、直角三角形的判定以及相似三角形的性质等,难度适中.23、(1)BD′=AC′,∠AMB=α,见解析;(2)AC′=kBD′,∠AMB=α,见解析;(3)AC′=BD′成立,∠AMB=α不成立【分析】(1)通过证明△BOD′≌△AOC′得到BD′=AC′,∠OBD′=∠OAC′,根据三角形内角和定理求出∠AMB=∠AOB=∠COD=α;(2)依据(1)的思路证明△BOD′∽△AOC′,得到AC′=kBD′,设BD′与OA相交于点N,由相似证得∠BNO=∠ANM,再根据三角形内角和求出∠AMB=α;(3)先利用等腰梯形的性质OA=OD,OB=OC,再利用旋转证得,由此证明△≌△,得到BD′=AC′及对应角的等量关系,由此证得∠AMB=α不成立.【详解】解:(1)AC′=BD′,∠AMB=α,证明:在矩形ABCD中,AC=BD,OA=OC=AC,OB=OD=BD,∴OA=OC=OB=OD,又∵OD=OD′,OC=OC′,∴OB=OD′=OA=OC′,∵∠D′OD=∠C′OC,∴180°﹣∠D′OD=180°﹣∠C′OC,∴∠BOD′=∠AOC′,∴△BOD′≌△AOC′,∴BD′=AC′,∴∠OBD′=∠OAC′,设BD′与OA相交于点N,∴∠BNO=∠ANM,∴180°﹣∠OAC′﹣∠ANM=180°﹣∠OBD′﹣∠BNO,即∠AMB=∠AOB=∠COD=α,综上所述,BD′=AC′,∠AMB=α,(2)AC′=kBD′,∠AMB=α,证明:∵在平行四边形ABCD中,OB=OD,OA=OC,又∵OD=OD′,OC=OC′,∴OC′=OA,OD′=OB,∵∠D′OD=∠C′OC,∴180°﹣∠D′OD=180°﹣∠C′OC,∴∠BOD′=∠AOC′,∴△BOD′∽△AOC′,∴BD′:AC′=OB:OA=BD:AC,∵AC=kBD,∴AC′=kBD′,∵△BOD′∽△AOC′,设BD′与OA相交于点N,∴∠BNO=∠ANM,∴180°﹣∠OAC′﹣∠ANM=180°﹣∠OBD′﹣∠BNO,即∠AMB=∠AOB=α,综上所述,AC′=kBD′,∠AMB=α,(3)∵在等腰梯形ABCD中,OA=OD,OB=OC,由旋转得:,∴,即,∴△≌△,∴AC′=BD′,,设BD′与OA相交于点N,∵∠ANB=+∠AMB=,,∴,∴AC′=BD′成立,∠AMB=α不成立.【点睛】此题是变化类图形问题,根据变化的图形找到共性证明三角形全等,由此得到对应边相等,对应角相等,在(3)中,对应角的位置发生变化,故而角度值发生了变化.24、(1)见解析,的坐标为;(2)见解析,【分析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标即可;(2)根据网格结构找出点A1、B1、C1绕点A1顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可,再根据勾股定理求出A1C1的长度,然后根据弧长公式列式计算即可得解.【详解】解:(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论