数学-专项9.2 平行四边形的性质【八大题型】(举一反三)(苏科版)(原版)_第1页
数学-专项9.2 平行四边形的性质【八大题型】(举一反三)(苏科版)(原版)_第2页
数学-专项9.2 平行四边形的性质【八大题型】(举一反三)(苏科版)(原版)_第3页
数学-专项9.2 平行四边形的性质【八大题型】(举一反三)(苏科版)(原版)_第4页
数学-专项9.2 平行四边形的性质【八大题型】(举一反三)(苏科版)(原版)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题9.2平行四边形的性质【八大题型】【苏科版】TOC\o"1-3"\h\u【题型1利用平行四边形的性质求长度】 1【题型2利用平行四边形的性质求角度】 3【题型3利用平行四边形的性质求面积】 4【题型4平行四边形的性质在折叠中的运用】 5【题型5平行四边形的性质在坐标系中的运用】 6【题型6利用平行四边形的性质进行证明】 7【题型7利用平行四边形的性质求最值】 9【题型8平行四边形的性质与动点的综合】 10【知识点平行四边形的性质】(1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.(2)平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.(3)平行线间的距离处处相等.(4)平行四边形的面积:①平行四边形的面积等于它的底和这个底上的高的积.②同底(等底)同高(等高)的平行四边形面积相等.【题型1利用平行四边形的性质求长度】【例1】(2022春·四川绵阳·八年级校考期中)如图,在▱ABCD中,∠BCD=60°,DC=6,点E、F分别在AD,BC上,将四边形ABFE沿EF折叠得四边形A′B′FE,A′E恰好垂直于

A.3 B.23−1 C.33【变式1-1】(2022秋·山东济宁·八年级济宁市第十五中学校考阶段练习)如图,▱ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若BC=8,A.16 B.17 C.18 D.19【变式1-2】(2022春·山东临沂·八年级统考期末)如图,▱ABCD中,AB=6,AD=10,按以下步骤作图:①以点B为圆心,适当长为半径画弧,分别交BA于点E,交BC于点F;②分别以点E,F为圆心,大于12EF的长为半径画弧,两弧在∠ABC内相交于点P;③画射线BP,交AD于点Q,交对角线AC于点O.若BA⊥CA,则AO的长度为(A.3 B.3 C.32 D.【变式1-3】(2022秋·浙江杭州·九年级杭州市公益中学校考期中)如图,在▱ABCD中,AD=BD,∠ADC=105°,点E在AD上,∠EBA=60°,则EDAE

A.23 B.3 C.32 【题型2利用平行四边形的性质求角度】【例2】(2022春·福建厦门·八年级厦门外国语学校校考阶段练习)在▱ABCD中,AC、BD交于点O.过点O作OE⊥BD交BC于点E,连接DE.若∠CDE=∠CBD=15°.求∠ABC的度数.【变式2-1】(2022秋·四川成都·九年级成都七中校考期中)若平行四边形ABCD的两个内角∠A:∠B=1:2,则∠A的度数是(

)A.45° B.60° C.90° D.120°【变式2-2】(2022春·江苏南京·八年级校考期中)如图,以平行四边形ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,则∠AEB的度数是(

).A.130° B.135° C.150° D.125°【变式2-3】(2022春·陕西西安·八年级西安市铁一中学校考阶段练习)如图,平行四边形ABCD中,AE⊥BC于点E,G为线段AE上一点且满足EG=BC,AG=CE,连CG并延长交AB于点F,则∠BFC的度数为_____.

【题型3利用平行四边形的性质求面积】【例3】(2022秋·山东济宁·八年级济宁市第十五中学校考阶段练习)如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,AE=3,AF=7,平行四边形ABCD的周长为60,则平行四边形ABCD的面积是(

)A.36 B.48 C.63 D.75【变式3-1】(2022春·吉林长春·八年级校考期中)如图,m∥n,点C、D、E在直线m上,四边形ABED为平行四边形,若△ABC的面积为5,则平行四边形【变式3-2】(2022春·辽宁葫芦岛·七年级统考期末)如图,在平面直角坐标系中,已知点Am,0,Bn,0,且m,n满足m+12+n−3=0,将线段AB先向右平移1个单位长度,再向上平移3个单位长度,得到线段DC,其中点D与点A对应,点C与点B对应,连接AD,BC,

(1)补全图形,并写出平行四边形ABCD各顶点坐标;(2)平行四边形ABCD的面积是多少?(3)在x轴上是否存在点M,使△MBD的面积等于平行四边形ABCD的面积?若存在,求出点M坐标;若不存在,请说明理由.【变式3-3】(2022春·吉林长春·八年级长春市第四十五中学校考期中)图①、图②均是6×6的正方形网格,每个小正方形的边长为1,小正方形的顶点称为格点,点A在格点上.用直尺在给定的网格中按要求画图,所画图形的顶点在格点上.(1)在图①中以点A为顶点,画一个面积为6的平行四边形.(2)在图②中以点A为对角线交点,画一个面积为6的平行四边形.【题型4平行四边形的性质在折叠中的运用】【例4】(2022春·吉林长春·八年级校考期中)如图,将平行四边形ABCD沿对角线AC折叠,使点B落在点B′处,若∠1=48°,∠2=32°,则∠B的度数为(

A.124° B.114° C.104° D.56°

【变式4-1】(2022春·河南南阳·八年级校联考期末)如图,E,F分别是平行四边形ABCD的边AD,BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到四边形EFC′D′,ED′交BC于点A.6 B.12 C.18 D.24【变式4-2】(2022秋·浙江宁波·八年级期末)如图,在▱ABCD中,点E,F分别在边AB、AD上,将△AEF沿EF折叠,点A恰好落在BC边上的点G处.若∠A=45°,AB=62,5BE=AE.则AF长度为_____.【变式4-3】(2022秋·湖北武汉·九年级校考阶段练习)四边形ABCD为平行四边形,己知AB=13,BC=6,AC=5,点E是BC边上的动点,现将△ABE沿AE折叠,点B′是点B的对应点,设CE长为x,若点B′落在△ADE内(包括边界),则x的取值范围为____________.【题型5平行四边形的性质在坐标系中的运用】【例5】(2022春·浙江温州·八年级校联考阶段练习)在直角坐标系中,A,B,C,D的坐标依次为(1,−1),(−2,3),(a,0),(0,b).若以A,B,C,D为顶点的四边形是平行四边形,则a+b的值不可能是(

)A.-7 B.-1 C.1 D.7【变式5-1】(2022春·江苏泰州·八年级校考阶段练习)如图,在平面直角坐标系中,点A(-3,0)、B(0,-4),点P是y轴上一动点,连接AP并延长至点D,使PD=AP,以AB、AD为邻边作□ABCD

,连接OC,当OC长最小时,则点P的坐标是________.【变式5-2】(2022春·重庆·八年级重庆南开中学校考期中)如图,在平面直角坐标系中,D是平行四边形ABOC内一点,CD与x轴平行,AD与y轴平行,已知AD=2,CD=8,∠ADB=135°,S△ABD=6,则【变式5-3】(2022秋·全国·九年级专题练习)如图,在直角坐标系中,平行四边形ABCD的BC边在x轴上,点A0,3,B−1,0,若直线

【题型6利用平行四边形的性质进行证明】【例6】(2023秋·重庆九龙坡·九年级重庆市育才中学校考期末)如图,在平行四边形ABCD中,连接对角线BD,AE平分∠BAD分别交BC、BD于点E、F.(1)尺规作图:作∠BCD的角平分线,交AD于点H,交BD的于点G.(保留作图痕迹,不写作法)(2)在(1)问的条件下,求证:BF=DG.证明:四边形ABCD是平行四边形∴AB=CD,①∴∠ABD=∠CDB,∵AE平分∠BAD,CH平分∠BCD,∴②,∠DCH=1∵四边形ABCD为平行四边形,∴③∴∠BAE=∠DCH,在△ABF和△CDG中,∠ABD=∠CDB④∴△ABF≌∴BF=DG【变式6-1】(2022春·广东江门·八年级江门市怡福中学校考阶段练习)如图,在▱ABCD中,点E是CD边的中点,连接AE并延长交BC的延长线于点F,连接BE,BE⊥AF.(1)求证:△ADE≌△FCE;

(2)求证:AE平分∠DAB;(3)若∠DAB=60°,AB=4,求▱ABCD的面积.【变式6-2】(2022秋·吉林长春·八年级校考期末)如图,在平行四边形ABCD中,E,F是对角线BD上两个点,且BE=DF(1)求证:AE=CF;(2)若AD=AE,∠DFC=140°,求∠DAE的度数=______【变式6-3】(2022秋·吉林长春·八年级长春外国语学校校考阶段练习)如图,▱ABCD的对角线AC和BD相交于点O,EF过点O且与边BC,AD分别相交于点E和点F.(1)求证:OE=OF;(2)若BC=4,AB=3,OF=2,求四边形CDFE的周长.【题型7利用平行四边形的性质求最值】【例7】(2022春·陕西西安·八年级西安市铁一中学校考阶段练习)在数学中,我们会用“截长补短”的方法来解决几条线段之间的和差问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=5cm,求四边形ABCD解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得

AE=AC=5,∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD=S△ABC(1)根据上面的思路,我们可以求得四边形ABCD的面积为cm2.(2)如图2,在△ABC中,∠ACB=90°,且AC+BC=4,求线段AB的最小值.(3)如图3,在平行四边形ABCD中,对角线AC与BD相交于O,且∠BOC=60°;AC+BD=10,则AD是否为定值?若是,求出定值;若不是,求出AD的最小值及此时平行四边形ABCD的面积.【变式7-1】(2022秋·陕西宝鸡·九年级统考期中)如图,在△ABC中,AB=BC=10,AC=12,D是BC边上任意一点,连接AD,以AD,CD为邻边作平行四边形ADCE,连接DE,则DE长的最小值为___________.【变式7-2】(2022春·浙江宁波·八年级校考期中)如图,在平行四边形ABCD中,BC=6,∠ABC=60°,BE平分∠ABC,点F为BC上一点,点G为BE上一点,连接CG,FG,则CG+FG的最小值为_________.【变式7-3】(2022春·四川绵阳·八年级校考期中)如图,在▱ABCD中,AO=32,∠ACB=30°,AC⊥AB,点E在AC上,CE=1,点P是BC边上的一动点,连接PE、PA,则

【题型8平行四边形的性质与动点的综合】【例8】(2022秋·山东济宁·八年级济宁市第十三中学校考阶段练习)如图,在梯形ABCD中,AD∥BC,AD=9cm,BC=24cm,E是BC的中点.动点P从点A出发沿AD向终点D运动,动点P平均每秒运动1cm;同时动点Q从点C出发沿CB向终点B运动,动点Q平均每秒运动2cm,当动点P停止运动时,动点(1)当动点P运动t(0<t<9)秒时,则PD=________;(用含t的代数式直接表示)(2)当动点Q运动t秒时,①若0<t<6,则EQ=________;(用含t的代数式直接表示)②若6<t<9,则EQ=________;(用含t的代数式直接表示)(3)当运动时间t为多少秒时,以点P,Q,D,E为顶点的四边形是平行四边形?【变式8-1】(2022春·浙江温州·八年级校考期中)如图,在平面直角坐标系中,四边形ABCO是平行四边形,O为坐标原点,点A的坐标是(−16,0),线段BC交y轴于点D,点D的坐标是(0,8),线段CD=6.动点P从点O出发,沿射线OA的方向以每秒2个单位的速度运动,同时动点Q从点D出发,以每秒1个单位的速度向终点B运动,当点Q运动到点B时,点P随之停止运动,运动时间为t秒.(1)用t的代数式表示:BQ=_______,AP=_______;(2)若以A,B,Q,P为顶点的四边形是平行四边形时,求t的值;(3)当△BQP恰好是等腰三角形时,求t【变式8-2】(2022秋·黑龙江大庆·八年级校考期末)已知在平行四边形ABCD中,动点P在AD边上,以每秒0.5cm的速度从点A向点D运动.

(1)如图1,在运动过程中,若CP平分∠BCD,且满足CD=CP,求∠B的度数.(2)如图2,另一动点Q在BC边上,以每秒2cm的速度从点C出发,在BC间往返运动,P,Q两点同时出发,当点P到达点D时停止运动(同时Q点也停止),若AD=6cm,求当运动时间为多少秒时,以A,P,C,Q四点组成的四边形是平行四边形.(3)如图3,在(1)的条件下,连接BP并延长与CD的延长线交于点F,连接AF,若AB=8,则△APF的面积是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论