黑龙江省哈尔滨市哈工大附中2024届数学八下期末教学质量检测模拟试题含解析_第1页
黑龙江省哈尔滨市哈工大附中2024届数学八下期末教学质量检测模拟试题含解析_第2页
黑龙江省哈尔滨市哈工大附中2024届数学八下期末教学质量检测模拟试题含解析_第3页
黑龙江省哈尔滨市哈工大附中2024届数学八下期末教学质量检测模拟试题含解析_第4页
黑龙江省哈尔滨市哈工大附中2024届数学八下期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨市哈工大附中2024届数学八下期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一个多边形的每个内角均为108º,则这个多边形是()A.七边形B.六边形C.五边形D.四边形2.如图,在平行四边行ABCD中,AD=8,点E、F分别是BD、CD的中点,则EF等于()A.3.5 B.4 C.4.5 D.53.如图,在△ABC中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于点E,交BC于点F,连接AF,则∠AFC的度数()A.B.C.D.4.下列事件中是必然事件的是()A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次B.一组对边平行,另一组对边相等的四边形是等腰梯形C.如果,那么D.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月5.数据3,2,0,1,的方差等于()A.0 B.1 C.2 D.36.如果等腰三角形的两边长分别为2和5,则它的周长为()A.9 B.7 C.12 D.9或127.如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.148.一个纳米粒子的直径是1纳米(1纳米=0.000000001米),则该纳米粒子的直径1纳米用科学记数法可表示为()A.0.110-8米B.1109米C.1010-10米D.110-9米9.一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集为()A.x>-3 B.x>0 C.x<-2 D.x<010.下列二次根式是最简二次根式的是(

)A. B. C. D.二、填空题(每小题3分,共24分)11.已经RtABC的面积为,斜边长为,两直角边长分别为a,b.则代数式a3b+ab3的值为_____.12.计算__________.13.若,则y_______(填“是”或“不是”)x的函数.14.如图是一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②′,…依此类推,若正方形①的边长为64m,则正方形⑨的边长为________cm.15.在一只不透明的袋子中装有2个红球、3个绿球和5个白球,这些球除颜色外都相同,摇匀后,从袋子中任意摸出1个球,摸出白球可能性_________摸出红球可能性.(填“等于”、“小于”或“大于”)16.正方形网格中,∠AOB如图放置,则tan∠AOB=______________.17.分解因式:x3-9x18.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.其中正确的序号是(把你认为正确的都填上).三、解答题(共66分)19.(10分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E作EF∥CD交BC的延长线于点F,连接CD.(1)求证:DE=CF;(2)求EF的长.20.(6分)如图①,E是AB延长线上一点,分别以AB、BE为一边在直线AE同侧作正方形ABCD和正方形BEFG,连接AG、CE.(1)试探究线段AG与CE的大小关系,并证明你的结论;(2)若AG恰平分∠BAC,且BE=1,试求AB的长;(3)将正方形BEFG绕点B逆时针旋转一个锐角后,如图②,问(1)中结论是否仍然成立,说明理由.21.(6分)如图,在△ABC中,∠B=30°,∠C=45°,AC=22.求BC边上的高及△ABC的面积.22.(8分)已知实数a,b,c在数轴上的位置如图所示,化简:.23.(8分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,且AE=CF,顺次连接B、E、D,F.求证:四边形BEDF是平行四边形.24.(8分)甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离(千米)与(时间)之间的函数关系图像(1)求甲从B地返回A地的过程中,与之间的函数关系式,并写出自变量的取值范围;(2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?25.(10分)如图,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.求证:AF=BE.26.(10分)如图1,在正方形ABCD中,E是BC边上一点,F是BA延长线上一点,AF=CE,连接BD,EF,FG平分∠BFE交BD于点G.(1)求证:△ADF≌△CDE;(2)求证:DF=DG;(3)如图2,若GH⊥EF于点H,且EH=FH,设正方形ABCD的边长为x,GH=y,求y与x之间的关系式.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.2、B【解题分析】分析:由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=1,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.详解:∵四边形ABCD是平行四边形,∴BC=AD=1.∵点E、F分别是BD、CD的中点,∴EF=BC=×1=2.故选B.点睛:本题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.3、C【解题分析】

先由等腰三角形的性质求出∠B的度数,再由垂直平分线的性质可得出∠BAF=∠B,由三角形内角与外角的关系即可解答.【题目详解】解:∵AB=AC,∠BAC=120°,∴∠B=(180°-120°)÷2=30°,∵EF垂直平分AB,∴BF=AF,∴∠BAF=∠B=30°,∴∠AFC=∠BAF+∠B=60°.故选:C.【题目点拨】本题考查的是线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.也考查了等腰三角形的性质及三角形外角的性质.4、D【解题分析】

根据事件发生的可能性大小判断相应事件的类型即可.【题目详解】解:A、投掷一枚质地均匀的硬币100次,正面朝上的次数为50次是随机事件;B、一组对边平行,另一组对边相等的四边形是等腰梯形是随机事件;C、如果a2=b2,那么a=b是随机事件;D、13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月是必然事件;故选:D.【题目点拨】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、C【解题分析】

先计算这5个数据的平均数,再根据方差公式计算即可.【题目详解】解:这5个数的平均数=(3+2+0+1-1)÷5=1,所以这组数据的方差=.故选:C.【题目点拨】本题考查的是方差的计算,属于基础题型,熟练掌握方差的计算公式是解题的关键.6、C【解题分析】试题分析:当2为腰时,三角形的三边是2,2,5,因为2+2<5,所以不能组成三角形;当2为底时,三角形的三边是2,5,5,所以三角形的周长=12,故选C.考点:等腰三角形的性质、三角形的三边关系.7、C【解题分析】

根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【题目详解】解:根据题意,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,

∴AD=1,BF=BC+CF=BC+1,DF=AC;

又∵AB+BC+AC=10,

∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.

故选C.【题目点拨】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.8、D【解题分析】

用科学记数法表示比较小的数时,n的值是第一个不是1的数字前1的个数的相反数,包括整数位上的1.【题目详解】1.111111111=111-9米.故选D.【题目点拨】本题主要考查了科学记数法表示较小的数,n值的确定是解答本题的难点.9、A【解题分析】

由图象可知kx+b=0的解为x=−1,所以kx+b>0的解集也可观察出来.【题目详解】从图象得知一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(−1,0),并且函数值y随x的增大而增大,因而则不等式kx+b>0的解集是x>−1.故选:A.【题目点拨】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.10、C【解题分析】

根据最简二次根式的定义对每个选项进行判断即可.【题目详解】解:A.,故原选项不是最简二次根式;B.,故原选项不是最简二次根式;C.是最简二次根式;D.=4,故原选项不是最简二次根式.故选C.【题目点拨】本题考点:最简二次根式.二、填空题(每小题3分,共24分)11、14【解题分析】

根据两直角边乘积的一半表示出面积,把已知面积代入求出ab的值,利用勾股定理得到a2+b2=,将代数式a3b+ab3变形,把a+b与ab的值代入计算即可求出值.【题目详解】解:∵的面积为∴=解得=2根据勾股定理得:==7则代数式==2×7=14故答案为:14【题目点拨】本题主要考查了三角形的面积公式、勾股定理、因式分解等知识点,把要求的式子因式分解,再通过面积公式和勾股定理等量代换是解题的关键.12、【解题分析】

将化成最简二次根式,再合并同类二次根式.【题目详解】解:故答案为:【题目点拨】本题考查了二次根式的运算,运用二次根式的乘除法法则进行二次根式的化简是解题的关键.13、不是【解题分析】

根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应的关系,据此即可判断.【题目详解】对于x的值,y的对应值不唯一,故不是函数,故答案为:不是.【题目点拨】本题是对函数定义的考查,熟练掌握函数的定义是解决本题的关键.14、4【解题分析】

第一个正方形的边长为64cm,则第二个正方形的边长为64×cm,第三个正方形的边长为64×()2cm,依此类推,通过找规律求解.【题目详解】根据题意:第一个正方形的边长为64cm;第二个正方形的边长为:64×=32cm;第三个正方形的边长为:64×()2cm,…此后,每一个正方形的边长是上一个正方形的边长的,所以第9个正方形的边长为64×()9-1=4cm,故答案为4【题目点拨】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.15、大于【解题分析】

分别求出摸到白球与摸到红球的概率,比较这两个概率即可得答案.【题目详解】∵共有球:2+3+5=10个,∴P白球==,P红球==,∵>,∴摸出白球可能性大于摸出红球可能性.故答案为:大于【题目点拨】本题考查概率的求法,概率=所求情况数与总情况数之比;熟练掌握概率公式是解题关键.16、1【解题分析】试题解析:如图,tan∠AOB==1,故答案为1.17、x【解题分析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。因此,先提取公因式x后继续应用平方差公式分解即可:x218、①②④【解题分析】分析:∵四边形ABCD是正方形,∴AB=AD。∵△AEF是等边三角形,∴AE=AF。∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①说法正确。∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。∵∠AEF=60°,∴∠AEB=75°。∴②说法正确。如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF。∵∠CAD≠∠DAF,∴DF≠FG。∴BE+DF≠EF。∴③说法错误。∵EF=2,∴CE=CF=。设正方形的边长为a,在Rt△ADF中,,解得,∴。∴。∴④说法正确。综上所述,正确的序号是①②④。三、解答题(共66分)19、(1)见解析;(2).【解题分析】

(1)直接利用三角形中位线定理得出DE∥BC,再利用平行四边形的判定方法得出答案;(2)利用等边三角形的性质结合平行四边形的性质得出DC=EF,进而求出答案.【题目详解】解:(1)∵D、E分别为AB、AC的中点,∴DE∥BC,DE=BC,∵EF∥CD∴四边形DEFC是平行四边形,∴DE=CF.(2)∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.【题目点拨】此题主要考查了等边三角形的性质以及平行四边形的判定与性质、三角形中位线定理等知识,正确掌握平行四边形的性质是解题关键.20、(1)AG=CE.,理由见解析;(2)+1;;(3)AG=CE仍然成立,理由见解析;【解题分析】

(1)根据正方形的性质可得AB=CB,BG=BE,∠ABG=∠CBE=90°,然后利用“边角边”证明△ABG和△CBE全等,再根据全等三角形对应边相等即可得证;(2)利用角平分线的性质以及正方形的性质得出MC=MG,进而利用勾股定理得出GC的长,即可得出AB的长;(3)先求出∠ABG=∠CBE,然后利用“边角边”证明△ABG和△CBE全等,再根据全等三角形对应边相等即可得证.【题目详解】(1)AG=CE.理由如下:在正方形ABCD和正方形BEFG中,AB=CB,BG=BE,∠ABG=∠CBE=90°,在△ABG和△CBE中,∵,∴△ABG≌△CBE(SAS),∴AG=CE;(2)过点G作GM⊥AC于点M,∵AG恰平分∠BAC,MG⊥AC,GB⊥AB,∴BG=MG,∵BE=1,∴MG=BG=1,∵AC平分∠DCB,∴∠BCM=45°,∴MC=MG=1,∴GC=,∴AB的长为:AB=BC=+1;(3)AG=CE仍然成立.理由如下:在正方形ABCD和正方形BEFG中,AB=CB,BG=BE,∠ABC=∠EBG=90°,∵∠ABG=∠ABC−∠CBG,∠CBE=∠EBG−∠CBG,∴∠ABG=∠CBE,在△ABG和△CBE中,∵,∴△ABG≌△CBE(SAS),∴AG=CE.【题目点拨】此题考查几何变换综合题,解题关键在于证明△ABG和△CBE全等.21、2,2+23.【解题分析】

先根据AD⊥BC,∠C=45°得出△ACD是等腰直角三角形,再由AC=22得出AD及CD的长,由∠B=30°求出BD的长,根据三角形的面积公式即可得出结论.【题目详解】∵AD⊥BC,∠C=45°,∴△ACD是等腰直角三角形,∵AD=CD.∵AC=22,∴2AD2=AC2,即2AD2=8,解得AD=CD=2.∵∠B=30°,∴AB=2AD=4,∴BD=AB2∴BC=BD+CD=23+2,∴S△ABC=12BC⋅AD=12(23+2)×2=2+2【题目点拨】此题考查勾股定理,解题关键在于求出BD的长.22、【解题分析】

直接利用数轴判断得出:a<0,a+c<0,c-a<0,b>0,进而化简即可.【题目详解】由数轴,得,,,.则原式.【题目点拨】此题考查二次根式的性质与化简,数轴,解题关键在于利用数轴进行解答.23、见解析【解题分析】

首先连接BD,交AC于点O,由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根据对角线互相平分的四边形是平行四边形得出结论.【题目详解】解:证明:连接BD,交AC于点O,如图所示,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.【题目点拨】本题考查了平行四边形的判定与性质,此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.24、(1)(2)3小时【解题分析】

(1)设,根据题意得,解得(2)当时,∴骑摩托车的速度为(千米/时)∴乙从A地到B地用时为(小时)【题目详解】请在此输入详解!25、证明见解析.【解题分析】

根据正方形的性质可得AB=AD,∠BAE=∠D=90°,再根据同角的余角相等求出∠ABE=∠DAF,然后利用“角边角”证明△ABE和△DAF全等,再根据全等三角形的证明即可.【题目详解】解:∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴∠CBM+∠ABF=90°,∵CE⊥BF,∴∠ECB+∠MBC=90°,∴∠ECB=∠ABF,在△ABF和△BCE中,∴△ABF≌△BCE(ASA),∴BE=AF.考点:全等三角形的判定与性质;正方形的性质.26、(1)详见解析;(2)详见解析;(3),理由详见解析.【解题分析】

(1)根据SAS即可证明;

(2)欲证明DF=DG,只要证明∠DFG=∠DGF;

(3)如图2中,作GM⊥A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论