版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省平遥县2024届八年级数学第二学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在数轴上表示不等式x≥-2的解集
正确的是()A. B.C. D.2.如图,在梯形ABCD中,,,,交BC于点若,,则CD的长是A.7 B.10 C.13 D.143.将一元二次方程-6x-5=0化成=b的形式,则b等于()A.4 B.-4 C.14 D.-144.函数y=3x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.在△ABC中,已知∠A、∠B、∠C的度数之比是1:1:2,BC=4,△ABC的面积为()A.2 B.125 C.4 D.6.如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE的长是()A.7 B.5 C.3 D.27.如图,线段经过平移得到线段,其中点,的对应点分别为点,,这四个点都在格点上.若线段上有一个点,,则点在上的对应点的坐标为A. B. C. D.8.不等式组的解集在数轴上可表示为()A. B. C. D.9.如图,在平面直角坐标系xOy中,点P(,5)关于y轴的对称点的坐标为()A.(,) B.(1,5) C.(1.) D.(5,)10.不等式2x﹣1<1的解集在数轴上表示正确的是()A. B.C. D.二、填空题(每小题3分,共24分)11.我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形,如果四边形的中点四边形是矩形,则对角线_____.12.数据1,4,5,6,4,5,4的众数是___.13.一次函数y=kx﹣2的图象经过第一、三、四象限,且与两坐标轴围成的三角形的面积等于4,则k的值等于__.14.方程=2的解是_________15.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为__________.16.若,则m=__17.若一组数据1,3,5,,的众数是3,则这组数据的方差为______.18.某日,王艳骑自行车到位于家正东方向的演奏厅听音乐会.王艳离家5分钟后自行车出现故障而且发现没有带钱包,王艳立即打电话通知在家看报纸的爸爸骑自行车赶来送钱包(王艳打电话和爸爸准备出门的时间忽略不计),同时王艳以原来一半的速度推着自行车继续走向演奏厅.爸爸接到电话后,立刻出发追赶王艳,追上王艳的同时,王艳坐上出租车并以爸爸速度的2倍赶往演奏厅(王艳打车和爸爸将钱包给王艳的时间忽略不计),同时爸爸立刻掉头以原速赶到位于家正西方3900米的公司上班,最后王艳比爸爸早到达目地的.在整个过程中,王艳和爸爸保持匀速行驶.如图是王艳与爸爸之间的距离y(米)与王艳出发时间x(分钟)之间的函数图象,则王艳到达演奏厅时,爸爸距离公司_____米.三、解答题(共66分)19.(10分)已知一次函数的图象经过点(1,3)与(﹣1,﹣1)(1)求这个一次函数的解析式;(2)试判断这个一次函数的图象是否经过点(﹣,0)20.(6分)(1)化简:.(2)若(1)中的值是不等式“”的一个负整数解,请你在其中选一个你喜欢的数代入(1)中求值.21.(6分)如图,在□ABCD中,E、F分别是AB、CD的中点.(1)求证:四边形EBFD为平行四边形;(2)对角线AC分别与DE、BF交于点M、N.求证:△ABN≌△CDM.22.(8分)如下4个图中,不同的矩形ABCD,若把D点沿AE对折,使D点与BC上的F点重合;(1)图①中,若DE︰EC=2︰1,求证:△ABF∽△AFE∽△FCE;并计算BF︰FC;(2)图②中若DE︰EC=3︰1,计算BF︰FC=;图③中若DE︰EC=4︰1,计算BF︰FC=;(3)图④中若DE︰EC=︰1,猜想BF︰FC=;并证明你的结论23.(8分)小明星期天从家里出发骑车去舅舅家做客,当他骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是他本次去舅舅家所用的时间与路程的关系式示意图,根据图中提供的信息回答下列问题:(1)小明家到舅舅家的路程是______米,小明在商店停留了______分钟;(2)在整个去舅舅家的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分?(3)本次去舅舅家的行程中,小明一共行驶了多少米?一共用了多少分钟?24.(8分)在正方形ABCD中,E是△ABD内的点,EB=EC.(1)如图1,若EB=BC,求∠EBD的度数;(2)如图2,EC与BD交于点F,连接AE,若,试探究线段FC与BE之间的等量关系,并说明理由.25.(10分)如图,在▱ABCD中,E、F为对角线BD上的两点,且BE=DF.求证:∠BAE=∠DCF.26.(10分)化简求值:(1+)÷,其中x=﹣1.
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】
根据在数轴上表示不等式解集的方法利用排除法进行解答.【题目详解】∵不等式x⩾−2中包含等于号,∴必须用实心圆点,∴可排除A.C,∵不等式x⩾−2中是大于等于,∴折线应向右折,∴可排除B.故选:D.【题目点拨】此题考查在数轴上表示不等式的解集,解题关键在于掌握数轴的表示方法2、A【解题分析】
根据平行线的性质,得,根据三角形的内角和定理,得,再根据等角对等边,得根据两组对边分别平行,知四边形ABED是平行四边形,则,从而求解.【题目详解】,,.又,..,,四边形ABED是平行四边形...故选:A.【题目点拨】此题综合运用了平行四边形的判定及性质、平行线的性质、等角对等边的性质.3、C【解题分析】
解:因为x2-6x-5=0所以x2-6x=5,配方得x2-6x+9=5+9,所以,所以b=14,故选C.【题目点拨】本题考查配方法,掌握配方法步骤正确计算是解题关键.4、B【解题分析】试题分析:根据一次函数的性质即可得到结果。,图象经过一、二、四象限,不经过第二象限,故选B.考点:本题考查的是一次函数的性质点评:解答本题的关键是熟练掌握一次函数的性质:当时,图象经过一、二、三象限;当时,图象经过一、三、四象限;当时,图象经过一、二、四象限;当时,图象经过二、三、四象限.5、D【解题分析】
根据比例设∠A=k,∠B=k,∠C=2k,然后根据三角形的内角和等于180°列方程求出k的值,从而得到三个内角的度数,再根据直角三角形30°角所对的直角边等于斜边的一半求出AB,利用勾股定理列式求出AC,然后根据三角形的面积公式列式计算即可得解.【题目详解】解:设∠A=k,∠B=k,∠C=2k,
由三角形的内角和定理得,k+k+2k=180°,
解得k=45°,
所以,∠A=45°,∠B=45°,∠C=90°,
∴AC=BC=4,,
所以,△ABC的面积=12故选:D.【题目点拨】本题考查的知识点是直角三角形的性质和三角形的内角和定理,解题关键是利用“设k法”求解三个内角的度数.6、B【解题分析】
首先由AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,判断出Rt△AEC≌Rt△CDB,又由AE=7,BD=2,得出CE=BD=2,AE=CD=7,进而得出DE=CD-CE=7-2=5.【题目详解】解:∵AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,∴Rt△AEC≌Rt△CDB又∵AE=7,BD=2,∴CE=BD=2,AE=CD=7,DE=CD-CE=7-2=5.【题目点拨】此题主要考查直角三角形的全等判定,熟练运用即可得解.7、A【解题分析】
根据点A、B平移后横纵坐标的变化可得线段AB向左平移2个单位,向上平移了3个单位,然后再确定a、b的值,进而可得答案.【题目详解】由题意可得线段AB向左平移2个单位,向上平移了3个单位,则P(a−2,b+3)故选A.【题目点拨】此题主要考查了坐标与图形的变化−−平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.8、D【解题分析】
先解不等式组可求得不等式组的解集是,再根据在数轴上表示不等式解集的方法进行表示.【题目详解】解不等式组可求得:不等式组的解集是,故选D.【题目点拨】本题主要考查不等组的解集数轴表示,解决本题的关键是要熟练掌握正确表示不等式组解集的方法.9、B【解题分析】根据关于纵轴的对称点:纵坐标相同,横坐标变成相反数,∴点P关于y轴的对称点的坐标是(1,5),故选B10、C【解题分析】
不等式移项合并,把x系数化为1,求出解集,表示在数轴上即可.【题目详解】解:不等式移项合并得:2x<2,解得:x<1,表示在数轴上,如图所示:故选C.【题目点拨】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.二、填空题(每小题3分,共24分)11、⊥【解题分析】
作出图形,根据三角形的中位线定理可得GH∥AC,同理可得EF∥AC,HG∥EF,HE∥GF,可得中点四边形是平行四边形,要想保证中点四边形是矩形,需要对角线互相垂直.【题目详解】解:∵H、G,分别为AD、DC的中点,
∴HG∥AC,
同理EF∥AC,
∴HG∥EF;
同理可知HE∥GF.
∴四边形EFGH是平行四边形.
当AC⊥BD时,AC⊥EH.
∴GH⊥EH.
∴∠EHG=90°.
∴四边形EFGH是矩形.
故答案为:⊥.【题目点拨】本题考查了三角形的中位线定理,矩形的判定,熟练运用三角形的中位线定理是解题的关键.12、1【解题分析】
众数是出现次数最多的数,据此求解即可.【题目详解】解:数据1出现了3次,最多,所以众数为1,故答案为:1.【题目点拨】此题考查了众数的知识.众数是这组数据中出现次数最多的数.13、.【解题分析】
一次函数图象与两坐标轴围成的面积,就要先求出一次函数图象与两坐标轴的交点,再由直角三角形面积公式求三角形面积,结合图象经过第一、三、四象限,判断k的取值范围,进而求出k的值.【题目详解】解:∵一次函数y=kx﹣2与两坐标轴的交点分别为,,∴与两坐标轴围成的三角形的面积S=,∴k=,∵一次函数y=kx﹣2的图象经过第一、三、四象限,∴k>0,∴k=,故答案为:.【题目点拨】本题考查了一次函数图象的特征、一次函数与坐标轴交点坐标的求法、三角形面积公式.利用三角形面积公式列出方程并求解是解题的关键.14、【解题分析】【分析】方程两边平方可得到整式方程,再解之可得.【题目详解】方程两边平方可得x2-3x=4,即x2-3x-4=0,解得x1=-1,x2=4故答案为:【题目点拨】本题考核知识点:二次根式,无理方程.解题关键点:化无理方程为整式方程.15、x≤1.【解题分析】
将点P(m,3)代入y=x+2,求出点P的坐标;结合函数图象可知当x≤1时x+2≤ax+c,即可求解;【题目详解】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x+2≤ax+c的解为x≤1,故答案为:x≤1.【题目点拨】本题考查一次函数的交点坐标与一元一次不等式的关系;运用数形结合思想把一元一次不等式的解转化为一次函数图象的关系是解题的关键.16、1【解题分析】
利用多项式乘以多项式计算(x-m)(x+2)可得x2+(2-m)x-2m,然后使x的一次项系数相等即可得到m的值.【题目详解】∵(x-m)(x+2)=x2+(2-m)x-2m,
∴2-m=-6,
m=1,
故答案是:1.【题目点拨】考查了多项式乘以多项式,关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.17、2【解题分析】
先根据众数的概念得出x=3,再依据方差的定义计算可得.【题目详解】解:∵数据1,3,5,x的众数是3,∴x=3,则数据为1、3、3、5,∴这组数据的平均数为:,∴这组数据的方差为:;故答案为:2.【题目点拨】本题主要考查众数和方差,解题的关键是根据众数的概念求出x的值,并熟练掌握方差的定义和计算公式.18、1.【解题分析】
根据函数图象可知,王艳出发10分钟后,爸爸追上了王艳,根据此时爸爸的5分钟的行程等于王艳前5分钟的行程与后5分钟的行程和,得到爸爸的速度与王艳骑自行车的速度的关系,再根据函数图象可知,爸爸到赶到公司时,公司距离演奏厅的距离为9400米,再根据已知条件,便可求得家与演奏厅的距离,由函数图象又可知,王艳到达演奏厅的时间为秒,据此列出方程,求得王艳的速度与爸爸的速度,进而便可求得结果.【题目详解】解:设王艳骑自行车的速度为xm/min,则爸爸的速度为:(5x+x)÷5=x(m/min),由函数图象可知,公司距离演奏厅的距离为9400米,∵公司位于家正西方3900米,∴家与演奏厅的距离为:9400﹣3900=5500(米),根据题意得,5x+5×x+()×=5500,解得,x=200(m/min),∴爸爸的速度为:(m/min)∴王艳到达演奏厅时,爸爸距离公司的距离为:5×300+3900﹣()×300=1(m).故答案为:1.【题目点拨】本题考查了函数图象与行程问题,解题的关键是将函数图象与实际的行程对应起来,列出方程,解出相关量.三、解答题(共66分)19、(1)y=2x+1;(2)经过点(-,0).【解题分析】
(1)设一次函数的解析式为:y=kx+b,把点(1,3)与(﹣1,﹣1)代入求出k和b即可;(2)当x=-时,求出y的值,即可判断出.【题目详解】解:(1)设一次函数的解析式为:y=kx+b,把点(1,3)与(﹣1,﹣1)代入解析式可得:,解得:k=2,b=1,所以直线的解析式为:y=2x+1;(2)因为在y=2x+1中,当x=﹣时,y=0,所以一次函数的图象经过点(﹣,0).【题目点拨】求一次函数的解析式并根据解析式判断图象是否经过某点是本题的考点,待定系数法求出一次函数解析式是解题的关键.20、(1)x+1;(2)-2.【解题分析】
(1)先将括号内的进行通分,再把除法转化为乘法,约分化简即可;(2)求出不等式的解集,再取一个满足(1)成立的x的负整数值代入求解即可.【题目详解】(1)原式==x+1;(2)解不等式“”得,∴其负整数解是-3、-2、-1.∴当时,原式=-3+1=-2【题目点拨】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.要注意代入求值时,要使原式和化简的每一步都有意义.21、(1)证明见解析;(2)证明见解析.【解题分析】试题分析:(1)根据平行四边形的性质,得到AB∥CD,AB=CD;再根据一组对边平行且相等的四边形是平行四边形,可得答案;(2)根据平行四边的性质,可得AB∥CD,AB=CD,∠CDM=∠CFN;根据全等三角形的判定,可得答案.试题解析:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵E、F分别是AB、CD的中点,∴BE=DF,∵BE∥DF,∴四边形EBFD为平行四边形;(2)∵四边形EBFD为平行四边形,∴DE∥BF,∴∠CDM=∠CFN,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠BAC=∠DCA,∠ABN=∠CFN,∴∠ABN=∠CDM,在△ABN与△CDM中,∵∠BAN=∠DCM,AB=CD,∠ABN=∠CDM,∴△ABN≌△CDM(ASA).考点:1.平行四边形的判定与性质;2.全等三角形的判定.22、(1)根据折叠的性质及矩形的性质可证得△ABF∽△AFE∽△FCE,再根据相似三角形的性质求解即可,1:1;(2)1:2,1:3;(3)1︰(n-1)【解题分析】试题分析:根据折叠的性质及矩形的性质可证得△ABF∽△AFE∽△FCE,再根据相似三角形的性质求解即可.解:(1)∵∠BAF+∠AFB=90°,∠CFE+∠AFB=90°∴∠BAF=∠CFE∵∠B=∠C=90°∴△ABF∽△FCE∴BF︰CE=AB︰FC=AF︰FE∴AB︰AF=BF︰FE∵∠B=∠AFE=90°∴△ABF∽△AFE∴△ABF∽△AFE∽△FCE∵DE︰EC=2︰1∴FE︰EC=2︰1∴BF︰FC=1︰1(2)若DE︰EC=3︰1,则BF︰FC=1︰2;若DE︰EC=4︰1,计算BF︰FC=1︰3;(3)∵DE︰EC=︰1∴FE︰EC=︰1∴BF︰FC=1︰(n-1).考点:相似三角形的综合题点评:相似三角形的综合题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.23、(1)1500,4;(2)小明在12-14分钟最快,速度为米/分.(3)14.【解题分析】
(1)根据图象,路程的最大值即为小明家到舅舅家的路程;读图,对应题意找到其在商店停留的时间段,进而可得其在书店停留的时间;(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;(3)分开始行驶的路程,折回商店行驶的路程以及从商店到舅舅家行驶的路程三段相加即可求得小明一共行驶路程;读图即可求得本次去舅舅家的行程中,小明一共用的时间.【题目详解】解:(1)根据图象舅舅家纵坐标为1500,小明家的纵坐标为0,故小明家到舅舅家的路程是1500米;据题意,小明在商店停留的时间为从8分到12分,故小明在商店停留了4分钟.(2)根据图象,时,直线最陡,故小明在12-14分钟最快,速度为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 风力发电机培训
- 几何风大学生职业生涯规划模板
- 保洁仪容仪表服务意识培训
- 山西省晋城市泽州县丹河新城水西学校2024-2025学年七年级上学期第一次质检生物试卷(含解析)
- 2024-2025学年江苏省苏州市昆山市周庄中学八年级(上)第一次形成性评价数学试卷(含答案)
- T-XZZL 0033-2024 高粱面(红面)擦尖传统美食制作规程
- 广东省肇庆市宣卿中学2024-2025学年九年级上学期第一次月考物理试卷
- Windows Server网络管理项目教程(Windows Server 2022)(微课版)课件项目9 VPN服务器的配置与管理
- 工程结构荷载与可靠度设计原理第一部分小结
- E审通演示培训专用16
- 银行活体牲畜抵押贷款管理办法
- JJG 1005-2019 电子式绝缘电阻表(现行有效)
- 精神科护理风险管理及防范.(省会)PPT课件
- 静脉治疗专项培训试题库(含答案)
- 生物校本教材—生活中的生物科学
- 《汽车机械基础》试卷试题(含答案)
- 高空作业平台使用说明书
- 303093 池国华 《内部控制与风险管理(第3版)》思考题和案例分析答案
- 国家电网公司科学技术奖励办法实施细则
- 02安全培训、教育需求识别表
- 餐饮业4D厨房现场管理
评论
0/150
提交评论