




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届临汾市重点中学数学八下期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,菱形ABCD中,∠B=60°,AB=2cm,E,F分别是BC,CD的中点,连接AE,EF,AF,则△AEFA.23cm B.3cm C.42.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的()A.平均数 B.中位数 C.众数 D.方差3.一个正多边形的每一个外角的度数都是60°,则这个多边形的边数是:()A.8 B.7 C.6 D.54.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为()A.12 B.24 C.36 D.485.当压力F(N)一定时,物体所受的压强p(Pa)与受力面积S(m2)的函数关系式为P=(S≠0),这个函数的图象大致是()A. B.C. D.6.某市招聘老师的笔试和面试的成绩均按百分制计,并且分别按40%和60%来计算综合成绩.王老师本次招聘考试的笔试成绩为90分,面试成绩为85分,经计算他的综合成绩是()A.85分 B.87分 C.87.5分 D.90分7.勾股定理是“人类最伟大的十个科学发现之一”.中国对勾股定理的证明最早出现在对《周髀算经》的注解中,它表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲.在《周髀算经》注解中证明勾股定理的是我国古代数学家()A.祖冲之 B.杨辉 C.刘徽 D.赵爽8.如果方程有增根,那么k的值()A.1 B.-1 C.±1 D.79.下列图书馆的标志中,是中心对称图形的是()A. B.C. D.10.方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.只有一个实数根11.如图,已知一组平行线a//b//c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=2,BC=3,DE=l.6,则EF=()A.2.4 B.1.8 C.2.6 D.2.812.如图为一△ABC,其中D.E两点分别在AB、AC上,且AD=31,DB=29,AE=30,EC=32.若∠A=50°,则图中∠1、∠2、∠3、∠4的大小关系,下列何者正确?()A.∠1>∠3 B.∠2=∠4 C.∠1>∠4 D.∠2=∠3二、填空题(每题4分,共24分)13.对于实数,我们用符号表示两数中较小的数,如.因此,________;若,则________.14.小明统计了他家今年1月份打电话的次数及通话时间,并列出了频数分布表(如表)通话时间x/min0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)201695如果小明家全年打通电话约1000次,则小明家全年通话时间不超过5min约为_____次.15.当__________时,分式有意义.16.如图,正方形ABCD的面积为1,则以相邻两边中点的连线EF为边的正方形EFGH的周长为________.17.若反比例函数y=(2k-1)的图象在二、四象限,则k=________.18.已知一个多边形的每个内角都是,则这个多边形的边数是_______.三、解答题(共78分)19.(8分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b)(1)求b,m的值(2)垂直于x轴的直线x=a与直线l1,l2分别相交于C,D,若线段CD长为2,求a的值20.(8分)某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同.第1次第2次第3次第4次第5次甲成绩94746乙成绩757a7(1)a=__,x乙=____(2)①分别计算甲、乙成绩的方差.②请你从平均数和方差的角度分析,谁将被选中.21.(8分)如图,E、F分别为△ABC的边BC、CA的中点,延长EF到D,使得DF=EF,连接DA、DB、AE.(1)求证:四边形ACED是平行四边形;(2)若AB=AC,试说明四边形AEBD是矩形.22.(10分)我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.请解决下列问题:(1)已知:如图1,四边形ABCD是等对角四边形,∠A≠∠C,∠A=70°,∠B=75°,则∠C=°,∠D=°(2)在探究等对角四边形性质时:小红画了一个如图2所示的等对角四边形ABCD,其中,∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立,请你证明该结论;(3)图①、图②均为4×4的正方形网格,线段AB、BC的端点均在网点上.按要求在图①、图②中以AB和BC为边各画一个等对角四边形ABCD.要求:四边形ABCD的顶点D在格点上,所画的两个四边形不全等.(4)已知:在等对角四边形ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求对角线AC的长.23.(10分)如图,在平行四边形中,,垂足分别为.(1)求证:;(2)求证:四边形是平行四边形24.(10分)小明九年级上学期的数学成绩如下表:测试类别平时期中期末测试1测试2测试4课题学习112110成绩(分)106102115109(1)计算小明这学期的数学平时平均成绩?(2)如果学期总评成绩是根据如图所示的权重计算,求小明这学期的数学总评成绩?25.(12分)已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为、,点D是OA的中点,点P在BC边上运动,当是等腰三角形时,点Р的坐标为_______________.26.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?
参考答案一、选择题(每题4分,共48分)1、D【解题分析】
首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.【题目详解】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD=2cm,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE和△ADF中,AB=AD∠B∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF.连接AC,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD,∴∠BAE=∠DAF=30°,∴∠EAF=60°,BE=12AB=1cm∴△AEF是等边三角形,AE=AB2∴周长是33故选:D.【题目点拨】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.2、B【解题分析】
由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.【题目详解】11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选B.【题目点拨】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.3、C【解题分析】分析:正多边形的外角计算公式为:,根据公式即可得出答案.详解:根据题意可得:n=360°÷60°=6,故选C.点睛:本题主要考查的是正多边形的外角计算公式,属于基础题型.明确公式是解决这个问题的关键.4、B【解题分析】
首先根据题意画出图形,由一个菱形的边长为5,其中一条对角线长为8,可利用勾股定理,求得另一菱形的对角线长,继而求得答案.【题目详解】解:如图,∵菱形ABCD中,BD=8,AB=5,∴AC⊥BD,OB=BD=4,∴OA==3,∴AC=2OA=6,∴这个菱形的面积为:AC•BD=×6×8=1.故选B.【题目点拨】此题考查了菱形的性质以及勾股定理.注意菱形的面积等于其对角线积的一半.5、C【解题分析】
根据实际意义以及函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.【题目详解】解:当F一定时,P与S之间成反比例函数,则函数图象是双曲线,同时自变量是正数.故选:C.【题目点拨】此题主要考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.6、B【解题分析】
根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.【题目详解】解:王老师的综合成绩为:90×40%+85×60%=87(分),
故选:B.【题目点拨】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.7、D【解题分析】
在《周髀算经》注解中证明勾股定理的是我国古代数学家赵爽.【题目详解】在《周髀算经》注解中证明勾股定理的是我国古代数学家赵爽.故选D.【题目点拨】我国古代的数学家很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明.后人称它为“赵爽弦图”.8、A【解题分析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-7=0,所以增根是x=7,把增根代入化为整式方程的方程即可求出未知字母的值.【题目详解】∵方程的最简公分母为x-7,∴此方程的增根为x=7.方程整理得:48+k=7x,将x=7代入,得48+k=49,则k=1,选项A正确.【题目点拨】本题主要考查分式方程的增根,增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.9、C【解题分析】
根据中心对称图形的概念判断即可.【题目详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误.故选:C.【题目点拨】此题主要考查了中心对称图形的概念.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.10、C【解题分析】
把a=1,b=-1,c=3代入△=b2-4ac进行计算,然后根据计算结果判断方程根的情况.【题目详解】∵a=1,b=-1,c=3,∴△=b2-4ac=(-1)2-4×1×3=-11<0,所以方程没有实数根.故选C.【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.11、A【解题分析】
根据平行线分线段成比例定理得到,然后利用比例性质可求出EF的长.【题目详解】解:∵a∥b∥c,∴,即,∴EF=2.1.故选:A.【题目点拨】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.12、D【解题分析】
本题需先根据已知条件得出AD与AC的比值,AE与AB的比值,从而得出△ADE∽△ACB,最后即可求出结果.【题目详解】∵AD=31,BD=29,AE=30,EC=32,∴AB=31+29=60,AC=30+32=62,∴,,∴,∵∠A=∠A,∴△ADE∽△ACB,∴∠2=∠3,∠1=∠4,故选:D.【题目点拨】此题考查相似三角形的判定与性质,解题关键在于得出AD与AC的比值二、填空题(每题4分,共24分)13、2或-1.【解题分析】①∵--,∴min{-,-}=-;②∵min{(x−1)2,x2}=1,∴当x>0.5时,(x−1)2=1,∴x−1=±1,∴x−1=1,x−1=−1,解得:x1=2,x2=0(不合题意,舍去),当x⩽0.5时,x2=1,解得:x1=1(不合题意,舍去),x2=−1,14、1.【解题分析】
根据表格中的数据可以计算出小明家全年通话时间不超过5min的次数,本题得以解决.【题目详解】由题意可得,小明家全年通话时间不超过5min约为:1000×=1(次),故答案为:1.【题目点拨】本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.15、≠【解题分析】若分式有意义,则≠0,∴a≠16、2【解题分析】
由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.【题目详解】解:∵正方形ABCD的面积为1,
∴BC=CD==1,∠BCD=90°,
∵E、F分别是BC、CD的中点,
∴CE=BC=,CF=CD=,
∴CE=CF,
∴△CEF是等腰直角三角形,
∴EF=CE=,∴正方形EFGH的周长=4EF=4×=2;
故答案为2.【题目点拨】本题考查正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解题关键.17、1【解题分析】
根据反比例函数的定义,次数为-1次,再根据图象在二、四象限,2k-1<1,求解即可.【题目详解】解:根据题意,3k2-2k-1=-1,2k-1<1,
解得k=1或k=且k<,
∴k=1.
故答案为1.【题目点拨】本题利用反比例函数的定义和反比例函数图象的性质求解,需要熟练掌握并灵活运用.18、18【解题分析】
首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【题目详解】解:多边形每一个内角都等于多边形每一个外角都等于边数故答案为【题目点拨】此题主要考查了多边形的外角与内角,关键是掌握多边形的外角与它相邻的内角互补,外角和为360°.三、解答题(共78分)19、(1)-1;(2)或.【解题分析】
(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【题目详解】(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.(2)当x=a时,yC=2a+1;当x=a时,yD=4﹣a.∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=,∴a=或a=.20、(1)4,6;(2)乙【解题分析】
(1)根据总成绩相同可求得a;(2)根据方差公式,分别求两者方差.即s²=1n[(x1-x)²+(x2-x)²+...+(xn-x)²];【题目详解】(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则a=30﹣7﹣7﹣5﹣7=4,x乙(2)甲的方差为:15[(9﹣6)2+(4﹣6)2+(7﹣6)2+(4﹣6)2+(6﹣6)2乙的方差为:15[(7﹣6)2+(5﹣6)2+(7﹣6)2+(4﹣6)2+(7﹣6)2②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中;【题目点拨】本题考核知识点:平均数,方差.解题关键点:理解平均数和方差的意义.21、(1)证明见解析;(2)证明见解析【解题分析】
(1)由已知可得:EF是△ABC的中位线,则可得EF∥AB,EF=AB,又由DF=EF,易得AB=DE,根据有一组对边平行且相等的四边形是平行四边形,即可证得四边形ABED是平行四边形;(2)由(1)可得四边形AECD是平行四边形,又由AB=AC,AB=DE,易得AC=DE,根据对角线相等的平行四边形是矩形,可得四边形AECD是矩形.【题目详解】解:(1)∵E、F分别为△ABC的边BC、CA的中点,∴EF∥AB,EF=AB,∵DF=EF,∴EF=DE,∴AB=DE,∴四边形ABED是平行四边形;(2)∵DF=EF,AF=CF,∴四边形AECD是平行四边形,∵AB=AC,AB=DE,∴AC=DE,∴四边形AECD是矩形.或∵DF=EF,AF=CF,∴四边形AECD是平行四边形,∵AB=AC,BE=EC,∴∠AEC=90°,∴四边形AECD是矩形.【题目点拨】本题考查矩形的判定及平行四边形的判定,掌握判定方法正确推理论证是解题关键.22、(1)140°,1°;(2)证明见解析;(3)见解析;(4)2或2.【解题分析】试题分析:(1)根据四边形ABCD是“等对角四边形”得出∠D=∠B=1°,根据多边形内角和定理求出∠C即可;
(2)连接BD,根据等边对等角得出∠ABD=∠ADB,求出∠CBD=∠CDB,根据等腰三角形的判定得出即可;
(3)根据等对角四边形的定义画出图形即可求解;
(4)分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用含30°角的直角三角形的性质求出AE,得出DE,再用三角函数求出CD,由勾股定理求出AC;
②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,先求出AM、DM,再由矩形的性质得出DN=BM=3,BN=DM=2,求出CN、BC,根据勾股定理求出AC即可.试题解析:(1)解:∵四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=1°,∴∠D=∠B=1°,∴∠C=360°﹣1°﹣1°﹣70°=140°;(2)证明:如图2,连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴CB=CD;(3)如图所示:(4)解:分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图3所示:∵∠ABC=90°,∠DAB=60°,AB=5,∴∠E=30°,∴AE=2AB=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC=;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示:则∠AMD=90°,四边形BNDM是矩形,∵∠DAB=60°,∴∠ADM=30°,∴AM=AD=2,∴DM=2,∴BM=AB﹣AM=5﹣2=3,∵四边形BNDM是矩形,∴DN=BM=3,BN=DM=2,∵∠BCD=60°,∴CN=,∴BC=CN+BN=3,∴AC=.综上所述:AC的长为或.故答案为:140,1.【题目点拨】四边形综合题目:考查了新定义、四边形内角和定理、等腰三角形的判定与性质、勾股定理、三角函数、矩形的判定与性质等知识;本题难度较大,综合性强,特别是(4)中,需要进行分类讨论,通过作辅助线运用三角函数和勾股定理才能得出结果.23、(1)见解析;(2)见解析【解题分析】
(1)证出△ABE≌△CDF即可求解;(2)证出平行,即可/【题目详解】(1)∵∴∠AEB=∠CFD∵平行四边形ABCD∴∠ABE=∠CDF,AB=CD∴△ABE≌△CDF∴AE=CF(2)∵∴AE∥CF∵AE=CF∴四边形是平行四边形【题目点拨】本题考查的是平行四边形的综合运用,熟练掌握全等三角形的性质是解题的关键.24、(1)108(2)110.4【解题分析】
(1)根据平均数的计算公式计算即可.(2)根据权重乘以每个时期的成绩总和为总评成绩计算即可.【题目详解】(1)根据平均数的计算公式可得:因此小明这学期的数学平时平均成绩为108(2)根据题意可得:因此小明这学期的数学总评成绩110.4【题目点拨】本题主要考查数据统计方面的知识,关键要熟悉概念和公式,应当熟练掌握.25、,,,;【解题分析】
题中没指明△ODP的腰长与底分别是哪个边,故应该分情况进行分析,从而求得点P的坐标.【题目详解】(1)OD是等腰三角形的底边时,此时P(2.5,4);(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育在线培训服务协议
- 建筑项目设计及施工合作协议
- 大湾区新兴产业发展项目合作框架协议
- 环保科技项目研发与推广合同
- 总包单位签订分包合同
- 买卖手房反担保合同
- 承包合同养殖合同
- 私人拖拉机买卖合同书
- 手房地产转让居间合同
- 游戏项目开发授权及运营协议
- 湘教版三年级美术下册教案全册
- (高清版)DB15∕T 3585-2024 高标准农田施工质量评定规程
- 试油(气)HSE作业指导书
- 重症监护-ICU的设置、管理与常用监测技术
- 法律顾问服务投标方案(完整技术标)
- 中医药三方合作协议书范本
- 2024年《动漫艺术概论》自考复习题库(附答案)
- 2024年职业技能“大数据考试”专业技术人员继续教育考试题库与答案
- 慢病报卡系统使用流程图
- 2024年辽宁轨道交通职业学院单招职业适应性测试题库含答案
- 小升初数学总复习专题训练:平行四边形的面积与梯形的面积
评论
0/150
提交评论