2024届江苏省苏州工业园区第十中学数学八年级第二学期期末联考试题含解析_第1页
2024届江苏省苏州工业园区第十中学数学八年级第二学期期末联考试题含解析_第2页
2024届江苏省苏州工业园区第十中学数学八年级第二学期期末联考试题含解析_第3页
2024届江苏省苏州工业园区第十中学数学八年级第二学期期末联考试题含解析_第4页
2024届江苏省苏州工业园区第十中学数学八年级第二学期期末联考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省苏州工业园区第十中学数学八年级第二学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在中,于点D,且是的中点,若则的长等于()A.5 B.6 C.7 D.82.若点P到△ABC的三个顶点的距离相等,则点P是△ABC()A.三条高的交点 B.三条角平分线的交点C.三边的垂直平分线的交点 D.三条中线的交点3.如图,已知△ABC,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧两弧相交于两点M、N;②作直线MN交AB于点D,连接CD.若∠B=30°,∠A=65°,则∠ACD的度数为()A.65° B.60° C.55° D.45°4.下列说法中不成立的是()A.在y=3x﹣1中y+1与x成正比例 B.在y=﹣中y与x成正比例C.在y=2(x+1)中y与x+1成正比例 D.在y=x+3中y与x成正比例5.若关于的一元二次方程有实数根,则应满足()A. B. C. D.6.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于点D,交AB于点E,下列叙述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.点D是线段AC的中点 D.AD=BD=BC7.若三角形的各边长分别是8cm、10cm和16cm,则以各边中点为顶点的三角形的周长为()A.34cm B.30cm C.29cm D.17cm8.下列说法:①平方等于64的数是8;②若a,b互为相反数,ab≠0,则;③若,则的值为负数;④若ab≠0,则的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为()A.0个 B.1个 C.2个 D.3个9.如图,直线l1//l2//l3,直线AC分别交直线l1、l2、l3于点A、B、C,直线DF分別交直线l1,l2、l3于点A.ABBC=C.PAPB=10.如果分式有意义,则a的取值范围是()A.a为任意实数出 B.a=3 C.a≠0 D.a≠311.某旅游纪念品商店计划制作一种手工编织的工艺品600件,制作120个以后,临近旅游旺季,商店老板决定加快制作进度,后来每天比原计划多制作20个,最后共用时11天完成,求原计划每天制作该工艺品多少个?设原计划每天制作该工艺品个,根据题意可列方程()A. B.C. D.12.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1,2,3 B.4,6,8 C.6,8,10 D.5,5,4二、填空题(每题4分,共24分)13.如果有意义,那么x的取值范围是_____.14.如图,在等边中,cm,射线,点从点出发沿射线以的速度运动,点从点出发沿射线以的速度运动,如果点、同时出发,当以点、、、为顶点的四边形是平行四边形时,运动时间为____.15.如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是_____cm.16.菱形的两条对角线长分别为3和4,则菱形的面积是_____.17.若代数式有意义,则的取值范围为__________.18.已知x+y=0.2,2x+3y=2.2,则x2+4xy+4y2=_____.三、解答题(共78分)19.(8分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?20.(8分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积.21.(8分)解不等式组,并在数轴上把解集表示出来.(1)(2)22.(10分)如图,已知直线:与x轴,y轴的交点分别为A,B,直线:与y轴交于点C,直线与直线的交点为E,且点E的横坐标为2.(1)求实数b的值;(2)设点D(a,0)为x轴上的动点,过点D作x轴的垂线,分别交直线与直线于点M、N,若以点B、O、M、N为顶点的四边形是平行四边形,求a的值.23.(10分)某校在一次广播操比赛中,甲、乙、丙各班得分如下表:班级服装统一动作整齐动作准确甲808488乙977880丙868083(1)根据三项得分的平均分,从高到低确定三个班级排名顺序.(2)该校规定:服装统一、动作整齐、动作准确三项得分都不得低于80分,并按,,的比例计入总分根据规定,请你通过计算说明哪一组获得冠军.24.(10分)如图,在四边形中,,,,是的中点.点以每秒个单位长度的速度从点出发,沿向点运动;点同时以每秒个单位长度的速度从点出发,沿向点运动.点停止运动时,点也随之停止运动.当运动时间为多少秒时,以点,,,为顶点的四边形是平行四边形.25.(12分)如图,一架长的梯子斜靠在一竖直的墙上,,这时.如果梯子的顶端沿墙下滑,那么梯子底端也外移吗?26.在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为;方案二中,当0≤x≤100时,y与x的函数关系式为,当x>100时,y与x的函数关系式为;(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】

由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【题目详解】∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD==8.故选D【题目点拨】此题考查勾股定理,直角三角形斜边上的中线,解题关键在于利用勾股定理求值2、C【解题分析】

根据线段垂直平分线上的点到两端点的距离相等进行解答.【题目详解】解:垂直平分线上任意一点,到线段两端点的距离相等,到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:C.【题目点拨】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.3、C【解题分析】

由作法可知,MN为垂直平分线,DC=CD,由等腰三角形性质可知∠BCD=∠B=30°,再由三角形内角和即可求出∠ACD度数.【题目详解】解:由作法可知,MN为垂直平分线,

∴BD=CD,

∴∠BCD=∠B=30°,

∵∠A=65°,

∴∠ACB=180°-∠A-∠B=85°,

∴∠ACD=∠ACB-∠BCD=85°-30°=55°.

故选:C.【题目点拨】此题主要考查了基本作图以及线段垂直平分线的性质,得出∠DCB=∠DBC=30°是解题关键.4、D【解题分析】试题解析:A.∵y=3x−1,∴y+1=3x,∴y+1与x成正比例,故本选项正确.B.∵∴y与x成正比例,故本选项正确;C.∵y=2(x+1),∴y与x+1成正比例,故本选项正确;D.∵y=x+3,不符合正比例函数的定义,故本选项错误.故选D.5、B【解题分析】

由方程有实数根,得到根的判别式的值大于等于0,列出关于A的不等式,求出不等式的解集即可得到a的范围.【题目详解】解:∵关于x的一元二次方程x2−2x+a=0有实数根,∴△=4−4a≥0,解得:a≤1;故选:B.【题目点拨】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.6、C【解题分析】分析:由△ABC中,AB=AC,∠A=36°,可求得∠ABC与∠C的度数,又由AB的垂直平分线DE交AC于D,交AB于E,根据线段垂直平分线的性质,可证得AD=BD,继而可求得∠ABD,∠DBC的度数,则可得BD平分∠ABC;又可求得∠BDC的度数,则可证得AD=BD=BC;可求得△BDC的周长等于AB+BC.详解:∵△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C=(180°-36°)÷2=72°,∵AB的垂直平分线DE交AC于D,交AB于E,∴AD=BD,∴∠ABD=∠A=36°,∵∠DBC=∠ABC-∠ABD=36°=∠ABD,∴BD平分∠ABC;故A正确;∴∠BDC=180°-∠DBC-∠C=72°,∴∠BDC=∠C,∴BD=BC=AD,故D正确;△BDC的周长等于BD+DC+BC=AD+DC+BC=AC+BC=AB+BC;故B正确;∵AD=BD>CD,∴D不是AC的中点,故C错误.故选C.点睛:此题考查了线段垂直平分线的性质与等腰三角形的判定与性质.此题难度适中,注意掌握转化思想与数形结合思想的应用.7、D【解题分析】

根据三角形中位线定理分别求出DE、EF、DF,根据三角形的周长公式计算即可.【题目详解】解:∵D、E分别为AB、BC的中点,

∴DE=AC=5,

同理,DF=BC=8,FE=AB=4,

∴△DEF的周长=4+5+8=17(cm),

故选D.【题目点拨】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.8、B【解题分析】

根据平方、相反数的定义、绝对值的性质依次判定各项后即可解答.【题目详解】①平方等于64的数是±8;②若a,b互为相反数,ab≠0,则;③若,可得a≥0,则的值为负数或0;④若ab≠0,当a>0,b>0时,=1+1=2;当a>0,b<0时,=1-1=0;当a<0,b>0时,=-1+1=0;当a<0,b<0时,=-1-1=-2;所以的取值在0,1,2,-2这四个数中,不可取的值是1.综上,正确的结论为②,故选B.【题目点拨】本题考查了平方的计算、相反数的定义及绝对值的性质,熟练运用相关知识是解决问题的关键.9、C【解题分析】

根据平行线分线段成比例定理列出比例式,判断即可.【题目详解】解:∵l1∥l2∥l3,平行线分线段成比例,∴ABBC=DEPAPC=PDPAPB=PDPBPE=PCPF=故选择:C.【题目点拨】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.10、D【解题分析】

直接利用分式的分母不等于0,进而得出答案.【题目详解】解:分式有意义,则,解得:.故选:D.【题目点拨】此题主要考查了分式有意义的条件,正确把握定义是解题关键.11、C【解题分析】

根据题意,可以列出相应的分式方程,本题得以解决.【题目详解】解:由题意可得,,故选:C.【题目点拨】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.12、C【解题分析】

判断是否为直角三角形,只要验证较短两边长的平方和等于最长边的平方即可.【题目详解】A、12+22=5≠32,故不能组成直角三角形,错误;B、42+62≠82,故不能组成直角三角形,错误;C、62+82=102,故能组成直角三角形,正确;D、52+42≠52,故不能组成直角三角形,错误.故选:C.【题目点拨】本题主要考查勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.二、填空题(每题4分,共24分)13、x>1【解题分析】

根据二次根式有意义的条件可得>1,再根据分式分母≠1可得x>1.【题目详解】由题意得:x>1,故答案为:x>1【题目点拨】此题考查二次根式有意义的条件,掌握其定义是解题关键14、1或3【解题分析】

用t表示出AE和CF,当AE=CF时,以点、、、为顶点的四边形是平行四边形,据此求解即可.【题目详解】解:设运动时间为t,则AE=tcm,BF=2tcm,∵是等边三角形,cm,∴BC=3cm,∴CF=,∵AG∥BC,∴AE∥CF,∴当AE=CF时,以点、、、为顶点的四边形是平行四边形,∴=t,∴2t-3=t或3-2t=t,∴t=3或t=1,故答案是:1或3.【题目点拨】本题考查了平行四边形的判定,平行四边形有很多判定定理,结合题目条件找到所缺的合适的判定条件是解题的关键.15、8【解题分析】

先根据勾股定理求出玻璃棒在容器里面的长度的最大值,再根据线段的和差关系即可求解.【题目详解】(),由勾股定理得(),则玻璃棒露在容器外的长度的最小值是().故答案为.【题目点拨】考查了勾股定理的应用,关键是运用勾股定理求得玻璃棒在容器里面的长度的最大值,此题比较常见,难度适中.16、1【解题分析】

根据菱形的面积等于对角线乘积的一半列式进行计算即可得解.【题目详解】解:∵菱形的两条对角线长分别为3和4,∴菱形的面积=×3×4=1.故答案为:1.【题目点拨】本题考查了菱形的性质,菱形的面积通常有两种求法,可以用底乘以高,也可以用对角线乘积的一半求解,计算时要根据具体情况灵活运用.17、且.【解题分析】

根据二次根式和分式有意义的条件进行解答即可.【题目详解】解:∵代数式有意义,∴x≥0,x-1≠0,解得x≥0且x≠1.故答案为x≥0且x≠1.【题目点拨】本题考查了二次根式和分式有意义的条件,二次根式的被开方数为非负数,分式的分母不为零.18、4【解题分析】

因为x2+4xy+4y2=(x+2y)²,只要求出x+2y即可,因为2x+3y=2.2减去x+y=0.2,刚好得到x+2y=2,所以结果为4,当然后你也可以用解二元一次方程组求出x,y然后再求代数x2+4xy+4y2的值【题目详解】解:用方程+3y=2.2减去方程x+y=0.2,得x+2y=2,故x2+4xy+4y2=(x+2y)²=4【题目点拨】本题利用了整式的乘法解决的,还可以用解一元二次方程的方法求解。三、解答题(共78分)19、(1)该商店3月份这种商品的售价是40元;(2)该商店4月份销售这种商品的利润是990元.【解题分析】

(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据数量=总价÷单价结合4月份比3月份多销售30件,即可得出关于x的分式方程,解之经检验即可得出结论;(2)设该商品的进价为y元,根据销售利润=每件的利润×销售数量,即可得出关于y的一元一次方程,解之即可得出该商品的进价,再利用4月份的利润=每件的利润×销售数量,即可求出结论.【题目详解】(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据题意得:,解得:x=40,经检验,x=40是原分式方程的解.答:该商店3月份这种商品的售价是40元.(2)设该商品的进价为y元,根据题意得:(40﹣a)×=900,解得:a=25,∴(40×0.9﹣25)×=990(元).答:该商店4月份销售这种商品的利润是990元.【题目点拨】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.20、(1)证明见解析;(2)24【解题分析】试题分析:(1)首先证明△ABC是等边三角形,进而得出∠AEC=90°,四边形AECF是平行四边形,即可得出答案;(2)利用勾股定理得出AE的长,进而求出菱形的面积.试题解析:(1)∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC,∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=AD,EC=BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形,又∵∠AEC=90°,∴四边形AECF是矩形;(2)在Rt△ABE中,AE=,所以,S菱形ABCD=6×3=18.考点:1.菱形的性质;2..矩形的判定.21、(1),数轴见解析;(2),数轴见解析【解题分析】

(1)分别解两个不等式,找出两个解集的公共部分,即为不等式组的解集,再将不等式组的解集在数轴上表示出来即可,(2)分别解两个不等式,找出两个解集的公共部分,即为不等式组的解集,再将不等式组的解集在数轴上表示出来即可.【题目详解】解:(1)解不等式2x-6<3x得:x>-6,解不等式得:x≤13,∴不等式组的解集为:,不等式组的解集在数轴上表示如下:(2)解不等式,解得:x,解不等式5x-1<3(x+1),解得:x<2,即不等式组的解集为:,不等组的解集在数轴上表示如下:【题目点拨】本题考查解一元一次不等式组和在数轴上表示不等式的解集,正确掌握解一元一次不等式组的方法是解题的关键.22、(2)2;(2)a=5或-2.【解题分析】

(2)利用一次函数图象上点的坐标特征,由点E在直线上可得到点E的坐标,由点E在直线上,进而得出实数b的值;

(2)依据题意可得MN=|2+a−(2−a)|=|a−2|,BO=2.当MN=BO=2时,以点B、O、M、N为顶点的四边形为平行四边形,即可得到|a-2|=2,进而得出a的值.【题目详解】解:(2)∵点E在直线l2上,且点E的横坐标为2,

∴点E的坐标为(2,2),

∵点E在直线l上,

∴2=−×2+b,

解得:b=2;

(2)如图,当x=a时,yM=2−a,yN=2+a,

∴MN=|2+a−(2−a)|=|a−2|,

当x=0时,yB=2,

∴BO=2.

∵BO∥MN,

∴当MN=BO=2时,以点B、O、M、N为顶点的四边形为平行四边形,

此时|a-2|=2,

解得:a=5或a=-2.

∴当以点B、O、M、N为顶点的四边形为平行四边形,a的值为5或-2.故答案为:(2)2;(2)a=5或-2.【题目点拨】本题考查一次函数图象上点的坐标特征、平行四边形的性质以及解一元一次方程,熟练掌握平行四边形的性质是解题的关键.23、(1)乙、甲、丙;(2)丙班级获得冠军.【解题分析】

利用平均数的公式即可直接求解,即可判断;利用加权平均数公式求解,即可判断.【题目详解】分、分、分,所以从高到低确定三个班级排名顺序为:乙、甲、丙;乙班的“动作整齐”分数低于80分,乙班首先被淘汰,而分、分,丙班级获得冠军.【题目点拨】本题考查了算术平均数和加权平均数的计算.平均数等于所有数据的和除以数据的个数.24、当运动时间为秒或秒时,以点,,,为顶点的四边形是平行四边形.【解题分析】

分别从当Q运动到E和B之间、当Q运动到E和C之间去分析求解即可求得答案.【题目详解】解:是的中点,,①当运动到和之间,设运动时间为,则得:,解得:;②当运动到和之间,设运动时间为,则得:,解得:,当运动时间为秒或秒时,以点,,,为顶点的四边形是平行四边形.【题目点拨】此题考查了梯形的性质以及平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用.25、梯子的顶端沿墙下滑时,梯子底端并不是也外移,而是外移.【解题分析】

先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD-OB即可得出结论.【题目详解】解:∵在中,,,∴.∴在中,,∴.∴∴∴梯子的顶端沿墙下滑时,梯子底端并不是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论