版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西贺州市2023年数学九年级第一学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,铁道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高()A.5m B.6m C.7m D.8m2.若关于x的一元二次方程kx2+2x+1=0有实数根,则k的取值范围是()A.k<1且k≠0 B.k≤1且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠03.下列是一元二次方程有()①;②;③;④.A. B. C. D.4.反比例函数的图象如图所示,以下结论:①常数m<-1;②在每个象限内,y随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(-x,-y)也在图象上.其中正确的是A.①② B.②③ C.③④ D.①④5.下列式子中,为最简二次根式的是()A. B. C. D.6.已知△ABC与△DEF相似且对应周长的比为4:9,则△ABC与△DEF的面积比为A.2:3 B.16:81C.9:4 D.4:97.如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子()A.逐渐变长 B.逐渐变短C.长度不变 D.先变短后变长8.如图,已知AB∥CD,AD=CD,∠1=40°,则∠2的度数为()A.60° B.65° C.70° D.75°9.若点A(﹣1,0)为抛物线y=﹣3(x﹣1)2+c图象上一点,则当y≥0时,x的取值范围是()A.﹣1<x<3 B.x<﹣1或x>3 C.﹣1≤x≤3 D.x≤﹣1或x≥310.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,使点P′在△ABC内,已知∠AP′B=135°,若连接P′C,P′A:P′C=1:4,则P′A:P′B=()A.1:4 B.1:5 C.2: D.1:11.三角形的两边长分别为3和2,第三边的长是方程的一个根,则这个三角形的周长是()A.10 B.8或7 C.7 D.812.在平面直角坐标系中,二次函数与坐标轴交点个数()A.3个 B.2个 C.1个 D.0个二、填空题(每题4分,共24分)13.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是
________.14.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.15.一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为__________cm.16.已知圆锥的底面半径为2cm,侧面积为10πcm2,则该圆锥的母线长为_____cm.17.已知关于的二次函数的图象如图所示,则关于的方程的根为__________18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为
________.三、解答题(共78分)19.(8分)某商场在“五一节”的假日里实行让利销售,全部商品一律按九销售,这样每天所获得的利润恰好是销售收入的25%.如果第一天的销售收入5万元,且每天的销售收入都有增长,第三天的利润是1.8万元,(1)求第三天的销售收入是多少万元?(2)求第二天和第三天销售收入平均每天的增长率是多少?20.(8分)已知:如图,在△ABC中,AD是∠BAC的平分线,∠ADE=∠B.求证:(1)△ABD∽△ADE;(2)AD2=AE•AB.21.(8分)现有甲、乙、丙三名学生参加学校演讲比赛,并通过抽签确定三人演讲的先后顺序.(1)求甲第一个演讲的概率;(2)画树状图或表格,求丙比甲先演讲的概率.22.(10分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.23.(10分)如图,已知反比例函数的图像与一次函数的图像交于A(-1,),B在(,-3)两点.(1)求的值;(2)直接写出使一次函数值大于反比例函数值时x的取值范围.24.(10分)解方程:(1)x2﹣4x﹣1=0;(2)5x(x﹣1)=x﹣1.25.(12分)在一个不透明的口袋里有标号为的五个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球.(1)下列说法:①摸一次,摸出一号球和摸出号球的概率相同;②有放回的连续摸次,则一定摸出号球两次;③有放回的连续摸次,则摸出四个球标号数字之和可能是.其中正确的序号是(2)若从袋中不放回地摸两次,求两球标号数字是一奇一偶的概率,(用列表法或树状图)26.为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.(1)小明从中随机抽取一张卡片是足球社团B的概率是.(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D的概率.
参考答案一、选择题(每题4分,共48分)1、D【分析】栏杆长短臂在升降过程中,将形成两个相似三角形,利用对应变成比例解题.【详解】解:设长臂端点升高x米,则,经检验,x=1是原方程的解,∴x=1.故选D.2、B【分析】根据一元二次方程的根的判别式即可求出答案.【详解】解:由题意可知:△=4﹣4k≥0,∴k≤1,∵k≠0,∴k≤1且k≠0,故选:B.【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.3、A【解析】根据一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式是一元二次方程.然后对每个方程作出准确的判断.【详解】解:①符合一元二次方程的定义,故正确;②方程二次项系数可能为0,故错误;③整理后不含二次项,故错误;④不是整式,故错误,故选:A.【点睛】本题考查的是一元二次方程的定义,根据定义对每个方程进行分析,然后作出准确的判断.4、C【解析】分析:因为函数图象在一、三象限,故有m>0,故①错误;在每个象限内,y随x的增大而减小,故②错;对于③,将A、B坐标代入,得:h=-m,,因为m>0,所以,h<k,故③正确;函数图象关于原点对称,故④正确.因此,正确的是③④.故选C.5、B【分析】利用最简二次根式定义判断即可.【详解】A、原式,不符合题意;B、是最简二次根式,符合题意;C、原式,不符合题意;D、原式,不符合题意;故选B.【点睛】此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.6、B【解析】直接根据相似三角形周长的比等于相似比,面积比等于相似比的平方解答.【详解】解:∵△ABC与△DEF相似且对应周长的比为4:9,∴△ABC与△DEF的相似比为4:9,∴△ABC与△DEF的面积比为16:81.故选B【点睛】本题考查的是相似三角形的性质,即相似三角形周长的比等于相似比,面积的比等于相似比的平方.7、A【分析】因为人和路灯间的位置发生了变化,光线与地面的夹角发生变化,所以影子的长度也会发生变化,进而得出答案.【详解】当他远离路灯走向B处时,光线与地面的夹角越来越小,小明在地面上留下的影子越来越长,所以他在走过一盏路灯的过程中,其影子的长度逐渐变长,故选:A.【点睛】此题考查了中心投影的性质,解题关键是了解人从路灯下走过的过程中,人与灯之间位置变化,光线与地面的夹角发生变化,从而导致影子的长度发生变化.8、C【分析】由等腰三角形的性质可求∠ACD=70°,由平行线的性质可求解.【详解】∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故选:C.【点睛】本题考查了等腰三角形的性质,平行线的性质,是基础题.9、C【分析】根据点A(﹣1,0)为抛物线y=﹣3(x﹣1)2+c图象上一点,可以求得c的值,从而可以得到该抛物线的解析式,然后令y=0,求得抛物线与x轴的交点,然后根据二次函数的性质即可得到当y≥0时,x的取值范围.【详解】解:∵点A(﹣1,0)为抛物线y=﹣3(x﹣1)2+c图象上一点,∴0=﹣3(﹣1﹣1)2+c,得c=12,∴y=﹣3(x﹣1)2+12,当y=0时,﹣3(x﹣1)2+12=0,解得:x1=﹣1,x2=3,又∵-3<0,抛物线开口向下,∴当y≥0时,x的取值范围是﹣1≤x≤3,故选:C.【点睛】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.10、C【分析】连接AP,根据同角的余角相等可得∠ABP=∠CBP′,然后利用“边角边”证明△ABP和△CBP′全等,根据全等三角形对应边相等可得AP=CP′,连接PP′,根据旋转的性质可得△PBP′是等腰直角三角形,然后求出∠AP′P是直角,再利用勾股定理用AP′表示出PP′,又等腰直角三角形的斜边等于直角边的倍,代入整理即可得解.【详解】解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:4,∴AP=4P′A,连接PP′,则△PBP′是等腰直角三角形,∴∠BP′P=45°,PP′=PB,∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,∴△APP′是直角三角形,设P′A=x,则AP=4x,∴PP'=,∴P'B=PB=,∴P′A:P′B=2:,故选:C.【点睛】本题主要考查的是全等三角形的性质以及判定,掌握全等三角形的五种判定方法的解本题的关键.11、B【分析】因式分解法解方程求得x的值,再根据三角形的三边关系判断能否构成三角形,最后求出周长即可.【详解】解:∵,∴(x-2)(x-3)=0,∴x-2=0或x-3=0,解得:x=2或x=3,当x=2时,三角形的三边2+2>3,可以构成三角形,周长为3+2+2=7;当x=3时,三角形的三边满足3+2>3,可以构成三角形,周长为3+2+3=8,故选:B.【点睛】本题主要考查解一元二次方程的能力和三角形三边的关系,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.12、B【分析】首先根据根的判别式判定与轴的交点,然后令,判定与轴的交点,即可得解.【详解】由题意,得∴该函数与轴有一个交点当时,∴该函数与轴有一个交点∴该函数与坐标轴有两个交点故答案为B.【点睛】此题主要考查利用根的判别式判定二次函数与坐标轴的交点,熟练掌握,即可解题.二、填空题(每题4分,共24分)13、1【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,
=0.2,解得,n=1.故估计n大约有1个.故答案为1.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.14、1【解析】根据题意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案为1.15、2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.16、5【解析】根据圆的周长公式求出圆锥的底面周长,根据圆锥的侧面积的计算公式计算即可.【详解】设圆锥的母线长为Rcm,圆锥的底面周长=2π×2=4π,则×4π×R=10π,解得,R=5(cm)故答案为5【点睛】本题考查的是圆锥的计算,理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.17、0或-1【分析】求关于的方程的根,其实就是求在二次函数中,当y=4时x的值,据此可解.【详解】解:∵抛物线与x轴的交点为(-4,0),(1,0),∴抛物线的对称轴是直线x=-1.5,∴抛物线与y轴的交点为(0,4)关于对称轴的对称点坐标是(-1,4),
∴当x=0或-1时,y=4,即=4,即=0∴关于x的方程ax2+bx=0的根是x1=0,x2=-1.故答案为:x1=0,x2=-1.【点睛】本题考查的是二次函数与一元二次方程的关系,能根据题意利用数形结合把求出方程的解的问题转化为二次函数的问题是解答此题的关键.18、【分析】采用列举法求概率.【详解】解:随机抽取的所有可能情况为:甲乙;甲丙;甲丁;乙丙;乙丁;丙丁六种情况,则符合条件的只有一种情况,则P(抽取的2名学生是甲和乙)=1÷6=.故答案为:【点睛】本题考查概率的计算,题目比较简单.三、解答题(共78分)19、(1)7.2万元;(2)20%.【分析】(1)利用第三天的销售收入=第三天的利润÷销售利润占销售收入的比例,即可求出结论;(2)设第二天和第三天销售收入平均每天的增长率是x,根据第一天及第三天的销售收入,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】(1)1.8÷25%=7.2(万元).答:第三天的销售收入是7.2万元.(2)设第二天和第三天销售收入平均每天的增长率是x,依题意,得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:第二天和第三天销售收入平均每天的增长率是20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20、(1)证明见解析;(2)证明见解析.【分析】(1)由AD是的平分线可得,又,则结论得证;(2)由(1)可得出结论.【详解】证明:(1)是的平分线,,.∽;(2)∽,.【点睛】此题主要考查了相似三角形的判定与性质,证明∽是解题的关键.21、(1);(2)画图见解析;【分析】(1)从3个人中选一个,得甲第一个演讲的概率是(2)列树状图即可求得答案.【详解】(1)甲第一个演讲的概率是;(2)树状图如下:共有6种等可能情况,其中丙比甲先演讲的有3种,∴P(丙比甲先演讲)=.【点睛】此题考查事件的概率,在确定事件的概率时通常选用树状图或列表法解答.22、(1)k=10,b=3;(2).【解析】试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.试题解析:(1)、把x=2,y=5代入y=,得k==2×5=10把x=2,y=5代入y=x+b,得b=3(2)、∵y=x+3∴当y=0时,x=-3,∴OB=3∴S=×3×5=7.5考点:一次函数与反比例函数的综合问题.23、(1)1;(2)x<-1或0<x<【分析】(1)将点B代入求出,再将点A代入即可求出的值;(2)由图像可得结论.【详解】(1)把B(,-3)代入中,得∴.∴.当时,.(2)如图,过点A、点B且平行于y轴及y轴所在的三条直线把平面分成了4部分由图象可得x<-1或0<x<时一次函数的图像在反比例函数图像的上方时,此时一次函数值大于反比例函数值,所以x的取值范围为x<-1或0<x<.【点睛】本题考查了反比例函数,将反比例函数的解析式与图像相结合是解题的关键.24、(1)x1=2+,x2=2﹣;(2)x1=1,x2=0.2【分析】(1)利用配方法求解,可得答案;(2)利用因式分解法求解,可得答案.【详解】(1)∵x2﹣4x=1,∴x2﹣4x+4=1+4,即(x﹣2)2=7,则x﹣2=±,解得:x1=2+,x2=2﹣;(2)∵5x(x﹣1)﹣(x﹣1)=0,∴(x﹣1)(5x﹣1)=0,则x﹣1=0或5x﹣1=0,解得:x1=1,x2=0.2.【点睛】本题主要考查一元二次方程的解法,掌握配方法和因式分解法解方程,是解题的关键.25、(1)①③;(2)【分析】(1)①摸一次,1号与5号球摸出概率相同,正确;②有放回的连续摸10次,不一定摸出2号球,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024房屋买卖全款购房合同范本模板
- 2024年度劳动合同员工岗位及工资待遇
- 2024公立医院与医疗设备供应商之间的采购合同
- 2024丙丁双方就服务器租赁及维护合同
- 2024年度医药产品研发与生产承包合同
- 2024年度船舶租赁合同
- 2024年度股权投资投资人与目标公司股权转让合同
- 2024年修订版:知识产权许可使用合同标的规范
- 2024年度KTV装修设计服务合同
- 赛船音乐课件教学课件
- 小红书种草营销师模拟题及答案(单选+多选+判断)
- 养老院膳食营养保障方案
- 陕西省汉中市勉县第二中学2024-2025学年高二上学期11月期中考试政治试题
- 2024年中国酱香型习酒市场调查研究报告
- 河北省邢台市2023-2024学年八年级上学期期中数学试题(解析版)
- 安全生产治本攻坚三年行动方案(2024-2026)
- 光伏发电工程建设标准工艺手册(2023版)
- 危险化学品考试试题(含答案)
- MOOC 颈肩腰腿痛中医防治-暨南大学 中国大学慕课答案
- 智能护理:人工智能助力的医疗创新
- 【基于近五年数据的云南嘉华食品实业财务报表分析15000字】
评论
0/150
提交评论