版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省中学山市小榄镇2023年九年级数学第一学期期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知在中,,,那么下列说法中正确的是()A. B. C. D.2.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与相似的是()A. B. C. D.3.⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定4.硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是()A.正面向上 B.正面不向上 C.正面或反面向上 D.正面和反面都不向上5.已知关于的一元二次方程有两个相等的实数根,则锐角等于()A. B. C. D.6.如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=1.5,BC=2,DE=1.8,则EF=()A.4.4 B.4 C.3.4 D.2.47.某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是()A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×58.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.9.对于实数,定义运算“*”;关于的方程恰好有三个不相等的实数根,则的取值范围是()A. B.C. D.10.已知二次函数,下列说法正确的是()A.该函数的图象的开口向下 B.该函数图象的顶点坐标是C.当时,随的增大而增大 D.该函数的图象与轴有两个不同的交点二、填空题(每小题3分,共24分)11.一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小文在袋中放入3个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.7左右,则袋中红球约有_____个.12.已知⊙半径为,点在⊙上,,则线段的最大值为_____.13.河北省赵县的赵州桥的拱桥是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为,当水面离桥拱顶的高度DO为4m时,这时水面宽度AB为______________.14.要使式子在实数范围内有意义,则实数x的取值范围是________.15.反比例函数的图象在每一象限内,y随着x的增大而增大,则k的取值范围是______.16.如图,物理课上张明做小孔成像试验,已知蜡烛与成像板之间的距离为24cm,要使烛焰的像A′B′是烛焰AB的2倍,则蜡烛与成像板之间的小孔纸板应放在离蜡烛_____cm的地方.17.如图,点P在函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为4,则k等于_____.18.已知,且,且与的周长和为175,则的周长为_________.三、解答题(共66分)19.(10分)盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:摸棋的次数n1002003005008001000摸到黑棋的次数m245176124201250摸到黑棋的频率(精确到0.001)0.2400.2550.2530.2480.2510.250(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是;(精确到0.01)(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由20.(6分)解不等式组,并把它的解集在数轴上表示出来.21.(6分)若,且2a-b+3c=21.试求a∶b∶c.22.(8分)已知与成反比例,当时,,求与的函数表达式.23.(8分)车辆经过润扬大桥收费站时,4个收费通道A.B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.24.(8分)如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG时,求证:菱形EFGH为正方形.25.(10分)在平面直角坐标系中,抛物线与轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)①直接写出抛物线的对称轴是________;②用含a的代数式表示b;(2)横、纵坐标都是整数的点叫整点.点A恰好为整点,若抛物线在点A,B之间的部分与线段AB所围成的区域内(不含边界)恰有1个整点,结合函数的图象,直接写出a的取值范围.26.(10分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A、B,与y轴相交于点C,B点的坐标为(6,0),点M为抛物线上的一个动点.(1)若该二次函数图象的对称轴为直线x=4时:①求二次函数的表达式;②当点M位于x轴下方抛物线图象上时,过点M作x轴的垂线,交BC于点Q,求线段MQ的最大值;(2)过点M作BC的平行线,交抛物线于点N,设点M、N的横坐标为m、n.在点M运动的过程中,试问m+n的值是否会发生改变?若改变,请说明理由;若不变,请求出m+n的值.
参考答案一、选择题(每小题3分,共30分)1、A【分析】利用同角三角函数的关系解答.【详解】在Rt△ABC中,∠C=90°,,则cosA=
A、cosB=sinA=,故本选项符合题意.
B、cotA=.故本选项不符合题意.
C、tanA=.故本选项不符合题意.
D、cotB=tanA=.故本选项不符合题意.
故选:A.【点睛】此题考查同角三角函数关系,解题关键在于掌握(1)平方关系:sin2A+cos2A=1;(2)正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比.2、B【分析】求出△ABC的三边长,再分别求出选项A、B、C、D中各三角形的三边长,根据三组对应边的比相等判定两个三角形相似,由此得到答案.【详解】如图,,AC=2,,A、三边依次为:,,1,∵,∴A选项中的三角形与不相似;B、三边依次为:、、1,∵,∴B选项中的三角形与相似;C、三边依次为:3、、,∵,∴C选项中的三角形与不相似;D、三边依次为:、、2,∵,∴D选项中的三角形与不相似;故选:B.【点睛】此题考查网格中三角形相似的判定,勾股定理,需根据勾股定理分别求每个三角形的边长,判断对应边的比是否相等是解题的关键.3、A【解析】∵圆心O到直线l的距离d=3,⊙O的半径R=4,则d<R,∴直线和圆相交.故选A.4、C【分析】根据概率公式分别求出各选项事件的概率,即可判断.【详解】解:若不考虑硬币竖起的情况,A.正面向上概率为1÷2=;B.正面不向上的概率为1÷2=;C.正面或反面向上的概率为2÷2=1;D.正面和反面都不向上的概率为0÷2=0∵1>>0∴正面或反面向上的概率最大故选C.【点睛】此题考查的是比较几个事件发生的可能性的大小,掌握概率公式是解决此题的关键.5、D【分析】根据一元二次方程根的判别式等于零,求出的值,进而即可得到答案.【详解】∵关于的一元二次方程有两个相等的实数根,∴∆=,解得:,∴=.故选D.【点睛】本题主要考查一元二次方程根的判别式以及特殊角三角函数,掌握一元二次方程根的判别式与根的关系,是解题的关键.6、D【分析】直接利用平行线分线段成比例定理对各选项进行判断即可.【详解】解:∵a∥b∥c,
∴,∵AB=1.5,BC=2,DE=1.8,∴,∴EF=2.4
故选:D.【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.7、D【分析】根据关键语句“矩形衬纸的面积为照片面积的3倍”列出方程求解即可.【详解】解:设照片四周外露衬纸的宽度为x英寸,根据题意得:(7+2x)(5+2x)=3×7×5,
故选:D【点睛】找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题.8、D【解析】如图旋转,想象下,可得到D.9、C【分析】设,根据定义得到函数解析式,由方程的有三个不同的解去掉函数图象与直线y=t的交点有三个,即可确定t的取值范围.【详解】设,由定义得到,∵方程恰好有三个不相等的实数根,∴函数的图象与直线y=t有三个不同的交点,∵的最大值是∴若方程恰好有三个不相等的实数根,则t的取值范围是,故选:C.【点睛】此题考查新定义的公式,抛物线与直线的交点与方程的解的关系,正确理解抛物线与直线的交点与方程的解的关系是解题的关键.10、D【分析】根据二次函数的性质解题.【详解】解:A、由于y=x2-4x-3中的a=1>0,所以该抛物线的开口方向是向上,故本选项不符合题意.
B、由y=x2-4x-3=(x-2)2-7知,该函数图象的顶点坐标是(2,-7),故本选项不符合题意.
C、由y=x2-4x-3=(x-2)2-7知,该抛物线的对称轴是x=2且抛物线开口方向向上,所以当x>2时,y随x的增大而增大,故本选项不符合题意.
D、由y=x2-4x-3知,△=(-4)2-4×1×(-3)=28>0,则该抛物线与x轴有两个不同的交点,故本选项符合题意.
故选:D.【点睛】考查了抛物线与x轴的交点,二次函数的性质,需要利用二次函数图象与系数的关系,二次函数图象与x轴交点的求法,配方法的应用等解答,难度不大.二、填空题(每小题3分,共24分)11、1【分析】根据口袋中有3个白球,利用小球在总数中所占比例得出与实验比例应该相等求出即可.【详解】解:∵通过大量重复摸球试验后发现,摸到红球的频率是0.1,口袋中有3个白球,∵假设有x个红球,∴,解得:x=1,经检验x=1是方程的根,∴口袋中有红球约有1个.故答案为:1.【点睛】此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.12、【分析】过点A作AE⊥AO,并使∠AEO=∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE的最大值,则答案即可求出.【详解】解:过点A作AE⊥AO,并使∠AEO=∠ABC,∵,∴,∴,∵,∴,∴,∴,又∵,∴,∵,∴,又∵,∴,∴,∴,在△OEB中,根据三角形三边关系可得:,∵,∴,∴BE的最大值为:,∴OC的最大值为:.【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形.13、【详解】根据题意B的纵坐标为﹣4,把y=﹣4代入y=﹣x2,得x=±10,∴A(﹣10,﹣4),B(10,﹣4),∴AB=20m.即水面宽度AB为20m.14、.【分析】根据二次根式被开方数大于等于0,对于分式,分母不能为0,列式计算即可得解.【详解】既是二次根式,又是分式的分母,∴解得:∴实数的取值范围是:故答案为:【点睛】本题主要考查了二次根式及分式有意义的条件,正确把握相关定义是解题关键.15、【分析】利用反比例函数图象的性质即可得.【详解】由反比例函数图象的性质得:解得:.【点睛】本题考查了反比例函数图象的性质,对于反比例函数有:(1)当时,函数图象位于第一、三象限,且在每一象限内,y随x的增大而减小;(2)当时,函数图象位于第二、四象限,且在每一象限内,y随x的增大而增大.16、8【解析】设蜡烛距小孔cm,则小孔距成像板cm,由题意可知:AB∥A′B′,∴△ABO∽△A′B′O,∴,解得:(cm).即蜡烛与成像板之间的小孔相距8cm.点睛:相似三角形对应边上的高之比等于相似比.17、-1【解析】由反比例函数系数k的几何意义结合△APB的面积为4即可得出k=±1,再根据反比例函数在第二象限有图象即可得出k=﹣1,此题得解.【详解】∵点P在反比例函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,∴S△APB=|k|=4,∴k=±1.又∵反比例函数在第二象限有图象,∴k=﹣1.故答案为﹣1.【点睛】本题考查了反比例函数系数k的几何意义,熟练掌握“在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解题的关键.18、1【分析】根据相似三角形的性质得△ABC的周长:△DEF的周长=3:4,然后根据与的周长和为11即可计算出△ABC的周长.【详解】解:∵△ABC与△DEF的面积比为9:16,∴△ABC与△DEF的相似比为3:4,
∴△ABC的周长:△DEF的周长=3:4,∵与的周长和为11,
∴△ABC的周长=×11=1.
故答案是:1.【点睛】本题考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.三、解答题(共66分)19、(1)0.25;(2).【分析】大量重复试验下摸球的频率可以估计摸球的概率;画树状图列出所有等可能结果,再找到符合条件的结果数,根据概率公式求解.【详解】(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是0.25,故答案为0.25;(2)由(1)可知,黑棋的个数为4×0.25=1,则白棋子的个数为3,画树状图如下:由表可知,所有等可能结果共有12种情况,其中这两枚棋颜色不同的有6种结果,所以这两枚棋颜色不同的概率为.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.20、,在数轴上表示见解析.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:解解不等式①得;解不等式②得;把解集在数轴上表示为所以不等式组的解集为.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21、4∶8∶7.【解析】试题分析:首先设等式为m,然后分别将a、b、c用含m的代数式来进行表示,根据2a-b+3c=21求出m的值,从而得出a、b、c的值,最后求出比值.试题解析:令===m,则a+2=3m,b=4m,c+5=6m,∴a=3m-2,b=4m,c=6m-5,∵2a-b+3c=21,∴2(3m-2)-4m+3(6m-5)=21,即20m=40,解得m=2,∴a=3m-2=4,b=4m=8,c=6m-5=7,∴a∶b∶c=4∶8∶7.22、【分析】根据反比例的定义,设,再将代入求出k,即可求得.【详解】由题意设,将代入得,解得,∴即.【点睛】本题考查了反比例的定义,利用代入法求解未知数,要注意的是,与的函数表达式指的是形式,如本题最后结果不可写成.23、(1);(2).【解析】试题分析:(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.试题解析:(1)选择A通道通过的概率=,故答案为;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.24、(1)证明见解析;(2)证明见解析.【分析】(1)连接GE,根据正方形的性质和平行线的性质得到∠AEG=∠CGE,根据菱形的性质和平行线的性质得到∠HEG=∠FGE,解答即可;(2)证明Rt△HAE≌Rt△GDH,得到∠AHE=∠DGH,证明∠GHE=90°,根据正方形的判定定理证明.【详解】解:(1)连接GE,∵AB∥CD,∴∠AEG=∠CGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠HEA=∠CGF;(2)∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,在Rt△HAE和Rt△GDH中,∴Rt△HAE≌Rt△GDH(HL),∴∠AHE=∠DGH,又∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形.【点睛】本题考查的是正方形的性质、菱形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用相关的性质定理和判定定理是解题的关键.25、(1)①直线x=1;②b=-1a;(1)-1≤a<-1或1<a≤1.【分析】(1)①根据抛物线的对称性可以直接得出其对称轴;②利用对称轴公式进一步求解即可;(1)分两种情况:①,②,据此依次讨论即可.【详解】解:(1)①∵当x=0时,y=c,∴点A坐标为(0,c),∵点A向右平移1个单位长度,得到点B,∴点B(1,c),∵点B在抛物线上,∴抛物线的对称轴是:直线x=1;故答案为:直线x=1;②∵抛物线的对称轴是直线:x=1,∴,即;(1)①如图,若,因为点A(0,c),B(1,c)都是整点,且指定区域内恰有一个整点,因此这个整点D的坐标必为(1,c-1),但是从运算层面如何保证“恰有一个”呢,与抛物线的顶点C(1,c-a)做位置与数量关系上的比较,必须考虑到紧邻点D的另一个整点E(1,c-1)不在指定区域内,所以可列出不等式组:,解得:;②如图,若,同理可得:,解得:;综上所述,符合题意的a的取值范围是-1≤a<
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高二化学选择性必修2(人教版)同步课件 第三章 第二节 第2课时 共价晶体
- 2025版高考物理二轮复习 第12讲 振动与波
- 山东省武城县三校联考2024-2025学年度第一学期第二次月考8年级生物试题
- 集体和他人的利益不能违背道德、违反法律 你怎样看待恶搞人民币
- 医学教材 产科困难气道的问题及处理
- 说好普通话方便你我他班会课件
- 《经济学方法论》课件
- 2025年中考英语一轮教材复习 写作话题4 日常活动
- 2025年中考英语一轮教材复习 七年级(下) Unit 5-3
- 《综合布线各子系统安装与调试 》理论习题三
- 追觅科技在线测评题
- 《实践是检验真理的唯一标准》名师教学课件
- 15建设美丽中国【中职专用】高一思想政治《中国特色社会主义》(高教版2023基础模块)
- 低空经济与市场趋势研究报告
- 国家开放大学电大《会计信息系统》期末终考题库及标准参考答案
- 2024-2024学年第一学期小学教育集团化办学工作总结
- 《中国心力衰竭诊断和治疗指南2024》解读
- 2024儿童青少年抑郁治疗与康复痛点调研报告
- 《人工智能基础》课件-6.人类与人工智能如何和平相处
- 3.15 秦汉时期的科技与文化 课件 2024-2025学年七年级历史上学期
- 云南省保山市(2024年-2025年小学三年级语文)人教版期末考试(上学期)试卷(含答案)
评论
0/150
提交评论