广东省深圳市龙岗区布吉中学2023年数学九上期末监测模拟试题含解析_第1页
广东省深圳市龙岗区布吉中学2023年数学九上期末监测模拟试题含解析_第2页
广东省深圳市龙岗区布吉中学2023年数学九上期末监测模拟试题含解析_第3页
广东省深圳市龙岗区布吉中学2023年数学九上期末监测模拟试题含解析_第4页
广东省深圳市龙岗区布吉中学2023年数学九上期末监测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳市龙岗区布吉中学2023年数学九上期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在菱形中,,且连接则()A. B.C. D.2.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)3.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2C.m>2 D.m<24.如图,点A、B、C均在⊙O上,若∠AOC=80°,则∠ABC的大小是()A.30° B.35° C.40° D.50°5.若分式的值为,则的值为()A. B. C. D.6.一件衣服225元,连续两次降价x%后售价为144元,则x=()A.0.2 B.2 C.8 D.207.如图,是的直径,点是上两点,且,连接,过点作,交的延长线于点,垂足为,若,则的半径为()A. B. C. D.8.若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且.图象上有一点在轴下方,则下列判断正确的是()A. B. C. D.9.如图,⊙O的半径为4,点A为⊙O上一点,OD⊥弦BC于点D,OD=2,则∠BAC的度数是().A.55° B.60° C.65° D.70°10.已知线段c是线段a和b的比例中项,若a=1,b=2,则c=()A.1 B. C. D.二、填空题(每小题3分,共24分)11.如图,在正方形ABCD中,点E在BC边上,且BC=3BE,AF平分∠DAE,交DC于点F,若AB=3,则点F到AE的距离为___________.12.如图,在△ABC中,AB=3,AC=4,BC=6,D是BC上一点,CD=2,过点D的直线l将△ABC分成两部分,使其所分成的三角形与△ABC相似,若直线l与△ABC另一边的交点为点P,则DP=________.13.如图,PA,PB是⊙O的切线,切点分别是点A和B,AC是⊙O的直径.若∠P=60°,PA=6,则BC的长为__________.14.若a、b、c、d满足ab=cd=15.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A,B向x轴作垂线,垂足分别为D,C,若矩形ABCD的面积是9,则k的值为_____.16.在中,,,则______________.17.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为.18.已知y是x的二次函数,y与x的部分对应值如下表:x...-1012...y...0343...该二次函数图象向左平移______个单位,图象经过原点.三、解答题(共66分)19.(10分)如图,是内接三角形,点D是BC的中点,请仅用无刻度的直尺,分别按下列要求画图.(1)如图1,画出弦AE,使AE平分∠BAC;(2)如图2,∠BAF是的一个外角,画出∠BAF的平分线.20.(6分)学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A.非常了解.B.了解.C.知道一点.D.完全不知道.将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:(1)求本次共调查了多少学生?(2)补全条形统计图;(3)该校九年级共有600名学生,请你估计“了解”的学生约有多少名?(4)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.21.(6分)如图,在中,,为边上的中点,交于点,.(1)求的值;(2)若,求的值.22.(8分)如图,折叠边长为的正方形,使点落在边上的点处(不与点,重合),点落在点处,折痕分别与边、交于点、,与边交于点.证明:(1);(2)若为中点,则;(3)的周长为.23.(8分)如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c的对称轴是x=且经过A,C两点,与x轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.24.(8分)(1)用公式法解方程:x2﹣2x﹣1=0(2)用因式分解法解方程:(x﹣1)(x+3)=1225.(10分)如图,已知AB经过圆心O,交⊙O于点C.(1)尺规作图:在AB上方的圆弧上找一点D,使得△ABD是以AB为底边的等腰三角形(保留作图痕迹);(2)在(1)的条件下,若∠DAB=30°,求证:直线BD与⊙O相切.26.(10分)如图,在⊙O中,点D是⊙O上的一点,点C是直径AB延长线上一点,连接BD,CD,且∠A=∠BDC.(1)求证:直线CD是⊙O的切线;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.

参考答案一、选择题(每小题3分,共30分)1、D【分析】菱形ABCD属于平行四边形,所以BCAD,根据两直线平行同旁内角互补,可得∠BAD与∠ABC互补,已知∠BAD=120°,∠ABC的度数即可知,且∠BCE=90°,CE=BC可推BCE为等腰直角三角形,其中∠CBE=45°,∠ABE=∠ABC-∠CBE,故∠ABE的度数可得.【详解】解:∵在菱形ABCD中,BCAD,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补),且∠BAD=120°,∴∠ABC=60°,又∵CEAD,且BCAD,∴CEBC,可得∠BCE=90°,又∵CE=BC,∴BCE为等腰直角三角形,∠CBE=45°,∴∠ABE=∠ABC-∠CBE=60°-45°=15°,故选:D.【点睛】本题主要考察了平行线的性质及菱形的性质求角度,掌握平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补;菱形中,四条边的线段长度一样,根据以上的性质定理,从边长的关系推得三角形的形状,进而求得角度.2、A【分析】利用位似图形的性质和两图形的位似比,并结合点A的坐标即可得出C点坐标.【详解】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,3).故选A.【点睛】本题主要考查位似变换、坐标与图形性质,解题的关键是结合位似比和点A的坐标.3、B【分析】根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【详解】∵函数的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.4、C【分析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC=80°,∴.故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5、A【分析】分式值为零的条件是分子等于零且分母不等于零,据此求解即可.【详解】解:∵分式的值为1,

∴x-2=1且x+4≠1.

解得:x=2.

故选:A.【点睛】本题主要考查的是分式值为零的条件,熟练掌握分式值为零的条件是解题的关键.6、D【分析】根据该衣服的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:依题意,得:225(1﹣x%)2=144,解得:x1=20,x2=180(不合题意,舍去).故选:D.【点睛】本题考查一元二次方程的应用,根据题意得出关于x的一元二次方程是解题关键.7、D【分析】根据已知条件可知、都是含角的直角三角形,先利用含角的直角三角形的性质求得,再结合勾股定理即可求得答案.【详解】解:连接、,如图:∵∴∴∴在中,∵是的直径∴∴在中,,即∴∴∴∴的半径为.故选:D【点睛】本题考查了圆的一些基本性质、含角的直角三角形的性质以及勾股定理,添加适当的辅助线可以更顺利地解决问题.8、D【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.【详解】A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、∵x1<x2,∴△=b2-4ac>0,故本选项错误;C、若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;D、若a>0,则x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,则(x0-x1)与(x0-x2)同号,∴a(x0-x1)(x0-x2)<0,综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.9、B【分析】首先连接OB,由OD⊥BC,根据垂径定理,可得∠BOC=2∠DOC,又由OD=1,⊙O的半径为2,易求得∠DOC的度数,然后由勾股定理求得∠BAC的度数.【详解】连接OB,∵OD⊥BC,∴∠ODC=90°,∵OC=2,OD=1,∴cos∠COD=,∴∠COD=60°,∵OB=OC,OD⊥BC,∴∠BOC=2∠DOC=120°,∴∠BAC=∠BOC=60°.故选B.【点睛】此题考查圆周角定理、垂径定理,解题关键在于利用圆周角定理得出两角之间的关系.10、B【分析】根据线段比例中项的概念,可得a:c=c:b,可得c2=ab=2,故c的值可求,注意线段不能为负.【详解】解:∵线段c是a、b的比例中项,∴c2=ab=2,

解得c=±,

又∵线段是正数,∴c=.

故选:B.【点睛】本题考查了比例中项的概念,注意:求两个数的比例中项的时候,应开平方.求两条线段的比例中项的时候,负数应舍去.二、填空题(每小题3分,共24分)11、【分析】延长AE交DC延长线于M,关键相似求出CM的长,求出AM长,根据角平分线性质得出比例式,代入求出即可.【详解】延长AE交DC延长线于M,

∵四边形ABCD是正方形,BC=3BE,BC=3,

∴AD=DC=BC=AB=3,∠D=90°,BE=1,CE=2,AB∥DC,

∴△ABE∽△MCE,

∴,

∴CM=2AB=6,

即DM=3+6=9,

由勾股定理得:,

∵AF平分∠DAE,

∴,

∴,

解得:,

∵AF平分∠DAE,∠D=90°,

∴点F到AE的距离=,

故答案为:.【点睛】本题考查了角平分线性质,勾股定理,相似三角形的性质和判定,正方形的性质等知识点,能正确作出辅助线是解此题的关键.12、1,,【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,

∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,

∴,∴,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.

∴,∴,∴DP=;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴,∴,∴DP=;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。综上所述,满足条件的DP的值为1,,.【点睛】本题考查了相似变换,利用分类讨论得出相似三角形是解题的关键,注意不要漏解.13、【分析】连接AB,根据PA,PB是⊙O的切线可得PA=PB,从而得出AB=6,然后利用∠P=60°得出∠CAB为30°,最后根据直角三角形中30°角的正切值进一步计算即可.【详解】如图,连接AB,∵PA,PB是⊙O的切线,∴PA=PB,∵∠P=60°,∴△ABP为等边三角形,∴AB=6,∵∠P=60°,∴∠CAB=30°,易得△ABC为直角三角形,∴,∴BC=AB×=,故答案为:.【点睛】本题主要考查了圆中切线长与三角函数的综合运用,熟练掌握相关概念是解题关键.14、3【解析】根据等比性质求解即可.【详解】∵ab∴a+cb+d=a故答案为:34【点睛】本题考查了比例的性质,主要利用了等比性质.等比性质:在一个比例等式中,两前项之和与两后项之和的比例与原比例相等.对于实数a,b,c,d,且有b≠0,d≠0,如果ab=c15、1.【分析】过点A作AE⊥y轴于点E,首先得出矩形EODA的面积为:4,利用矩形ABCD的面积是9,则矩形EOCB的面积为:4+9=1,再利用xy=k求出即可.【详解】过点A作AE⊥y轴于点E,∵点A在双曲线y=上,∴矩形EODA的面积为:4,∵矩形ABCD的面积是9,∴矩形EOCB的面积为:4+9=1,则k的值为:xy=k=1.故答案为1.【点睛】此题主要考查了反比例函数关系k的几何意义,得出矩形EOCB的面积是解题关键.16、【分析】根据sinA=,可得出的度数,并得出的度数,继而可得的值.【详解】在Rt△ABC中,,∵,∴∴∴=.故答案为:.【点睛】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.17、1:1.【解析】试题分析:∵△ABC与△DEF的相似比为1:1,∴△ABC与△DEF的周长比为1:1.故答案为1:1.考点:相似三角形的性质.18、2【分析】利用表格中的对称性得:抛物线与x轴另一个交点为(2,0),可得结论.【详解】解:由表格得:二次函数的对称轴是直线x==1.∵抛物线与x轴的一个交点为(-1,0),∴抛物线与x轴另一个交点为(2,0),∴该二次函数图象向左平移2个单位,图象经过原点;或该二次函数图象向右平移1个单位,图象经过原点.故填为2.【点睛】本题考查了二次函数图象与几何变换-平移,根据平移的原则:左加右减进行平移;也可以利用数形结合的思想画图解决.三、解答题(共66分)19、(1)见解析;(2)见解析【分析】(1)连接OD,延长OD交于E,连接AE,根据垂径定理可得,根据圆周角定理可得∠BAE=∠CAE,即可得答案;(2)连接OD,延长OD交于E,连接AE,反向延长OD,交于H,作射线AH,由(1)可知∠BAE=∠CAE,由HE是直径可得∠EAH=∠BAE+∠BAH=90°,根据平角的定义可得∠CAE+∠FAH=90°,即可证明∠BAH=∠FAH,可得答案.【详解】(1)如图,连接OD,延长OD交于E,连接AE,∵OE为半径,D为BC中点,∴,∴∠BAE=∠CAE,∴AE为∠BAC的角平分线,弦即为所求.(2)如图,连接OD,延长OD交于E,连接AE,反向延长OD,交于H,作射线AH,∵HE是直径,点A在上,∴∠EAH=∠BAE+∠BAH=90°,∴∠CAE+∠FAH=90°,由(1)可知∠BAE=∠CAE,∴∠BAH=∠FAH,∴AH平分∠BAF,射线即为所求.【点睛】本题考查垂径定理及圆周角定理,平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧;直径所对的圆周角是直角(90°);熟练掌握相关定理是解题关键.20、(1)30;(2)作图见解析;(3)240;(4).【解析】试题分析:(1)由D选项的人数及其百分比可得总人数;(2)总人数减去A、C、D选项的人数求得B的人数即可;(3)总人数乘以样本中B选项的比例可得;(4)画树状图列出所有等可能结果,根据概率公式求解可得.试题解析:解:(1)本次调查的学生人数为6÷20%=30;(2)B选项的人数为30﹣3﹣9﹣6=12,补全图形如下:(3)估计“了解”的学生约有600×=240名;(4)画树状图如下:由树状图可知,共有6种等可能结果,其中两人恰好是一男生一女生的有4种,∴被选中的两人恰好是一男生一女生的概率为=.点睛:本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21、(1)(2)【分析】(1)根据题意证出∠B=∠ADE,进而设出DE和AD的值,再结合勾股定理求出AE的值即可得出答案;(2)根据斜中定理求出AD和AB的值,结合∠B和∠AED的sin值求出AC和AE的值,相减即可得出答案.【详解】(1)∵,∴.又∵,∴.设,则.在中,,则.(2)∵为斜边上的中点,∴,∴.则,,∴.【点睛】本题考查的是解直角三角形,难度适中,需要熟练掌握直角三角形中的相关性质与定理.22、(1)详见解析;(2)详见解析;(3)详见解析.【分析】(1)根据折叠和正方形的性质结合相似三角形的判定定理即可得出答案;(2)设BE=x,利用勾股定理得出x的值,再利用相似三角形的性质证明即可得出答案;(3)设BM=x,AM=a-x,利用勾股定理和相似三角形的性质即可得出答案.【详解】证明:(1)∵四边形是正方形,∴,∴,∵为折痕,∴,∴,∴,在与中∵,,∴;(2)∵为中点,∴,设,则,在中,,∴,即,∴,∴,,由(1)知,,∴,∴,,∴;(3)设,则,,在中,,∴,即,解得:,由(1)知,,∴,∵,∴.【点睛】本题考查的是相似三角形的综合,涉及的知识点有折叠的性质、正方形的性质、勾股定理和相似三角形,难度系数较大.23、(1)抛物线的解析式为;(2)抛物线存在点M,点M的坐标或或或【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据函数值相等的两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)分两种情形分别求解即可解决问题;【详解】解:(1)当x=0时,y=2,即C(0,2),当y=0时,x+2=0,解得x=﹣4,即A(﹣4,0).由A、B关于对称轴对称,得B(1,0).将A、B、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2﹣x+2;(2)①当点M在x轴上方时,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,如图,设M(m,﹣x2﹣x+2),N(m,0).AN=m+4,MN=﹣m2﹣m+2,由勾股定理,得AC=,BC=,∵AC2+BC2=AB2,∴∠ACB=90°,当△ANM∽△ACB时,∠CAB=∠MAN,此时点M与点C重合,M(0,2).当△ANM∽△BCA时,∠MAN=∠ABC,此时M与C关于抛物线的对称轴对称,M(﹣3,2).②当点M在x轴下方时,当△ANM∽△ACB时,∠CAB=∠MAN,此时直线AM的解析式为y=﹣x﹣2,由,解得或,∴M(2,﹣3),当△ANM′∽△BCA时,∠MAN=∠ABC,此时AM′∥BC,∴直线AM′的解析式为y=﹣2x﹣8,由,解得或,∴M(5,﹣18)综上所述:抛物线存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,点M的坐标(﹣3,2)或(0,2)或(2,﹣3)或(5,﹣18).【点睛】本题主要考查了二次函数的综合,准确计算是解题的关键.24、(1)x=;(2)x=﹣5或x=3【分析】(1)根据公式法即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论