版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省深圳市福田区上步中学2023-2024学年数学九上期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.正五边形的每个外角度数为()A. B. C. D.2.主视图、左视图、俯视图分别为下列三个图形的物体是()A. B. C. D.3.抛物线的对称轴为直线()A. B. C. D.4.如图,是的外接圆,是的直径,若的半径是,,则()A. B. C. D.5.如图,在平面直角坐标系中,函数与的图像相交于,两点,过点作轴的平行线,交函数的图像于点,连接,交轴于点,则的面积为()A. B. C.2 D.6.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A.12 B.9 C.4 D.37.若是方程的一个根.则代数式的值是()A. B. C. D.8.下面哪个图形不是正方体的平面展开图()A. B.C. D.9.下列说法正确的是()A.三角形的外心一定在三角形的外部 B.三角形的内心到三个顶点的距离相等C.外心和内心重合的三角形一定是等边三角形 D.直角三角形内心到两锐角顶点连线的夹角为125°10.如图,在直角坐标系中,⊙A的半径为2,圆心坐标为(4,0),y轴上有点B(0,3),点C是⊙A上的动点,点P是BC的中点,则OP的范围是()A. B.2≤OP≤4 C.≤OP≤ D.3≤OP≤411.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.12.下列等式中从左到右的变形正确的是().A. B. C. D.二、填空题(每题4分,共24分)13.如图,E,F分别为矩形ABCD的边AD,BC的中点,且矩形ABCD与矩形EABF相似,AB=1,则BC的长为_____.14.如图,在半径为5的中,弦,,垂足为点,则的长为__________.15.某县为做大旅游产业,在2018年投入资金3.2亿元,预计2020年投入资金6亿元,设旅游产业投资的年平均增长率为,则可列方程为____.16.如果是一元二次方程的一个根,那么的值是__________.17.如图,在中,,是边上一点,过点作,垂足为,,,,求的长.18.黄冈中学是百年名校,百年校庆上的焰火晚会令很多人记忆犹新.有一种焰火升高高度为h(m)与飞行时间t(s)的关系式是,若这种焰火在点燃升空后到最高处引爆,则从点火到引爆所需时间为__________s.三、解答题(共78分)19.(8分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.20.(8分)如图,在平面直角坐标系中,点A,C分别在x轴,y轴上,四边形ABCO为矩形,AB=16,点D与点A关于y轴对称,tan∠ACB=,点E、F分别是线段AD、AC上的动点,(点E不与点A,D重合),且∠CEF=∠ACB.(1)求AC的长和点D的坐标;(2)求证:;(3)当△EFC为等腰三角形时,求点E的坐标.21.(8分)在矩形ABCD中,AB=3,AD=5,E是射线DC上的点,连接AE,将△ADE沿直线AE翻折得△AFE.(1)如图①,点F恰好在BC上,求证:△ABF∽△FCE;(2)如图②,点F在矩形ABCD内,连接CF,若DE=1,求△EFC的面积;(3)若以点E、F、C为顶点的三角形是直角三角形,则DE的长为.22.(10分)如图,是的直径,半径OC⊥弦AB,点为垂足,连、.(1)若,求的度数;(2)若,,求的半径.23.(10分)已知关于的一元二次方程的两实数根,满足,求的取值范围.24.(10分)如图,在△ABC中,AB=AC,点D为BC的中点,经过AD两点的圆分别与AB,AC交于点E、F,连接DE,DF.(1)求证:DE=DF;(2)求证:以线段BE+CF,BD,DC为边围成的三角形与△ABC相似,25.(12分)某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映:每涨价1元,每星期要少卖出10件.(1)每件商品涨价多少元时,每星期该商品的利润是4000元?(2)每件商品的售价为多少元时,才能使每星期该商品的利润最大?最大利润是多少元?26.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l及直线l外一点A.求作:直线AD,使得AD∥l.作法:如图2,①在直线l上任取一点B,连接AB;②以点B为圆心,AB长为半径画弧,交直线l于点C;③分别以点A,C为圆心,AB长为半径画弧,两弧交于点D(不与点B重合);④作直线AD.所以直线AD就是所求作的直线.根据小东设计的尺规作图过程,完成下面的证明.(说明:括号里填推理的依据)证明:连接CD.∵AD=CD=__________=__________,∴四边形ABCD是().∴AD∥l().
参考答案一、选择题(每题4分,共48分)1、B【解析】利用多边形的外角性质计算即可求出值.【详解】360°÷5=72°,故选:B.【点睛】此题考查了多边形的内角与外角,熟练掌握多边形的外角性质是解本题的关键.2、A【解析】分析:本题时给出三视图,利用空间想象力得出立体图形,可以先从主视图进行排除.解析:通过给出的主视图,只有A选项符合条件.故选A.3、C【解析】根据二次函数对称轴公式为直线,代入求解即可.【详解】解:抛物线的对称轴为直线,故答案为C.【点睛】本题考查了二次函数的对称轴公式,熟记公式是解题的关键.4、A【分析】连接CD,得∠ACD=90°,由圆周角定理得∠B=∠ADC,进而即可得到答案.【详解】连接CD,∵AD是直径,∴∠ACD=90°,∵的半径是,∴AD=3,∵∠B=∠ADC,∴,故选A.【点睛】本题主要考查圆周角定理以及正弦三角函数的定义,掌握圆周角定理以及正弦三角函数的定义,是解题的关键.5、B【分析】先确定A、B两点坐标,然后再确定点C坐标,从而可求△ABC的面积,再根据三角形中位线的性质可知答案.【详解】∵函数与的图像相交于,两点∴联立解得∴点A、B坐标分别是∵过点作轴的平行线,交函数的图像于点∴把代入到中得,解得∴点C的坐标为∴∵OA=OB,OE∥AC∴OE是△ABC的中位线∴故答案选B.【点睛】本题是一道综合题,考查了一次函数与反比例函数和三角形中位线性质,能够充分调动所学知识是解题的关键.6、A【分析】摸到红球的频率稳定在25%,即=25%,即可即解得a的值【详解】解:∵摸到红球的频率稳定在25%,∴=25%,解得:a=1.故本题选A.【点睛】本题考查用频率估计概率,熟记公式正确计算是本题的解题关键7、C【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:∴故答案为:C.【点睛】本题考查的知识点是根据一元二次方程的解求代数式的值,解题的关键是将已给代数式进行变形,使之与所给条件有关系,即可得解.8、A【分析】根据正方体展开图的11种形式,对各选项分析判断即可得解.【详解】解:A、不是正方体展开图,符合题意;B、是正方体展开图,不符合题意;C、是正方体展开图,不符合题意;D、是正方体展开图,不符合题意.故选:A.【点睛】本题主要考查了正方体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.9、C【分析】分别利用三角形内心以及三角形外心的性质判断得出即可.【详解】A.因为只有钝角三角形的外心才在三角形的外部,锐角三角形的外心在三角形内部,直角三角形的外心在斜边上,该选项错误;B.三角形的内心到三角形的三边距离相等,该选项错误;C.若三角形的外心与内心重合,则这个三角形一定是等边三角形,该选项正确;D.如图,∠C=90,∠BAC+∠ABC分别是角∠BAC、∠ABC的平分线,∴∠OAB+∠OBA,∴∠AOB,该选项错误.故选:C【点睛】本题考查三角形的外接圆和外心及三角形的内切圆与内心,正确把握它们的区别是解题的关键.10、A【分析】如图,在y轴上取点B'(0,﹣3),连接B'C,B'A,由勾股定理可求B'A=5,由三角形中位线定理可求B'C=2OP,当点C在线段B'A上时,B'C的长度最小值=5﹣2=3,当点C在线段B'A的延长线上时,B'C的长度最大值=5+2=7,即可求解.【详解】解:如图,在y轴上取点B'(0,﹣3),连接B'C,B'A,∵点B(0,3),B'(0,﹣3),点A(4,0),∴OB=OB'=3,OA=4,∴,∵点P是BC的中点,∴BP=PC,∵OB=OB',BP=PC,∴B'C=2OP,当点C在线段B'A上时,B'C的长度最小值=5﹣2=3,当点C在线段B'A的延长线上时,B'C的长度最大值=5+2=7,∴,故选:A.【点睛】本题考查了三角形中位线定理,勾股定理,平面直角坐标系,解决本题的关键是正确理解题意,熟练掌握三角形中位线定理的相关内容,能够得到线段之间的数量关系.11、B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.12、A【分析】根据同底数幂乘除法和二次根式性质进行分析即可.【详解】A.,正确;B.,错误;C.,c必须不等于0才成立,错误;D.,错误故选:A.【点睛】考核知识点:同底数幂除法,二次根式的化简,掌握运算法则是关键.二、填空题(每题4分,共24分)13、【分析】根据相似多边形的性质列出比例式,计算即可.【详解】∵矩形ABCD与矩形EABF相似,∴=,即=,解得,AD=,∴矩形ABCD的面积=AB•AD=,故答案为:.【点睛】本题考查了相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键.14、4【分析】连接OA,根据垂径定理得到AP=AB,利用勾股定理得到答案.【详解】连接OA,∵AB⊥OP,∴AP=AB=×6=3,∠APO=90°,又OA=5,∴OP===4,故答案为:4.【点睛】本题考查的是垂径定理的应用,掌握垂直于弦的直径平分这条弦是解题的关键.15、【分析】根据题意,找出题目中的等量关系,列出一元二次方程即可.【详解】解:根据题意,设旅游产业投资的年平均增长率为,则;故答案为:.【点睛】本题考查了一元二次方程的应用——增长率问题,解题的关键是熟练掌握增长率问题的等量关系,正确列出一元二次方程.16、6【分析】根据是一元二次方程的一个根可得m2-3m=2,把变形后,把m2-3m=2代入即可得答案.【详解】∵是一元二次方程的一个根,∴m2-3m=2,∴=2(m2-3m)+2=2×2+2=6,故答案为:6【点睛】本题考查一元二次方程的解的定义,熟练掌握定义并正确变形是解题关键.17、.【分析】在中,根据求得CE,在中,根据求得BC,最后将CE,BC的值代入即可.【详解】解:在中,,.在中,,.的长为.【点睛】本题考查了解直角三角形,熟练掌握三角函数定义是解题的关键.18、1【解析】根据关系式可知焰火的运行轨迹是一个开口向下的抛物线,已知焰火在升到最高时引爆,即到达抛物线的顶点时引爆,顶点横坐标就是从点火到引爆所需时间.则t==1s,故答案为1.三、解答题(共78分)19、(1)y=x2+6x+5;(2)①S△PBC的最大值为;②存在,点P的坐标为P(﹣,﹣)或(0,5).【解析】(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,求出直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣,即可求出P点;当点P(P′)在直线BC上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.【详解】解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵-<0,∴S△PBC有最大值,当t=﹣时,其最大值为;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式并解得:直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立①⑤并解得:x=﹣或﹣4(舍去﹣4),故点P(﹣,﹣);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5);故点P的坐标为P(﹣,﹣)或(0,5).【点睛】本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.20、(1)AC=20,D(12,0);(2)见解析;(3)(8,0)或(,0).【分析】(1)在Rt△ABC中,利用三角函数和勾股定理即可求出BC、AC的长度,从而得到A点坐标,由点D与点A关于y轴对称,进而得到D点的坐标;(2)欲证,只需证明△AEF与△DCE相似,只需要证明两个对应角相等即可.在△AEF与△DCE中,易知∠CAO=∠CDE,再利用三角形的外角性质证得∠AEF=∠DCE,问题即得解决;(3)当△EFC为等腰三角形时,有三种情况,需要分类讨论:①当CE=EF时,此时△AEF与△DCE相似比为1,则有AE=CD,即可求出E点坐标;②当EF=FC时,利用等腰三角形的性质和解直角三角形的知识易求得CE,再利用(2)题的结论即可求出AE的长,进而可求出E点坐标;③当CE=CF时,可得E点与D点重合,这与已知条件矛盾,故此种情况不存在.【详解】解:(1)∵四边形ABCO为矩形,∴∠B=90°,∵AB=16,tan∠ACB=,∴,解得:BC=12=AO,∴AC=20,A点坐标为(﹣12,0),∵点D与点A关于y轴对称,∴D(12,0);(2)∵点D与点A关于y轴对称,∴∠CAO=∠CDE,∵∠CEF=∠ACB,∠ACB=∠CAO,∴∠CDE=∠CEF,又∵∠AEC=∠AEF+∠CEF=∠CDE+∠DCE,∴∠AEF=∠DCE,∴△AEF∽△DCE.∴;(3)当△EFC为等腰三角形时,有以下三种情况:①当CE=EF时,∵△AEF∽△DCE,∴△AEF≌△DCE,∴AE=CD=20,∴OE=AE﹣OA=20﹣12=8,∴E(8,0);②当EF=FC时,如图1所示,过点F作FM⊥CE于M,则点M为CE中点,∴CE=2ME=2EF•cos∠CEF=2EF•cos∠ACB=.∵△AEF∽△DCE,∴,即:,解得:AE=,∴OE=AE﹣OA=,∴E(,0).③当CE=CF时,则有∠CFE=∠CEF,∵∠CEF=∠ACB=∠CAO,∴∠CFE=∠CAO,即此时F点与A点重合,E点与D点重合,这与已知条件矛盾.所以此种情况的点E不存在,综上,当△EFC为等腰三角形时,点E的坐标是(8,0)或(,0).【点睛】本题综合考查了矩形的性质、等腰三角形的性质、勾股定理、相似三角形的判定和性质、轴对称的性质、三角形的外角性质以及解直角三角形等知识,熟练掌握相似三角形的判定与性质是解题关键.难点在于第(3)问,当△EFC为等腰三角形时,有三种情况,需要分类讨论,注意不要漏解.21、(1)证明见解析;(2);(3)、5、15、【分析】(1)利用同角的余角相等,证明∠CEF=∠AFB,即可解决问题;(2)过点F作FG⊥DC交DC与点G,交AB于点H,由△FGE∽△AHF得出AH=5GF,再利用勾股定理求解即可;(3)分①当∠EFC=90°时;②当∠ECF=90°时;③当∠CEF=90°时三种情况讨论解答即可.【详解】(1)解:在矩形ABCD中,∠B=∠C=∠D=90°由折叠可得:∠D=∠EFA=90°∵∠EFA=∠C=90°∴∠CEF+∠CFE=∠CFE+∠AFB=90°∴∠CEF=∠AFB在△ABF和△FCE中∵∠AFB=∠CEF,∠B=∠C=90°△ABF∽△FCE(2)解:过点F作FG⊥DC交DC与点G,交AB于点H,则∠EGF=∠AHF=90°在矩形ABCD中,∠D=90°由折叠可得:∠D=∠EFA=90°,DE=EF=1,AD=AF=5∵∠EGF=∠EFA=90°∴∠GEF+∠GFE=∠AFH+∠GFE=90°∴∠GEF=∠AFH在△FGE和△AHF中∵∠GEF=∠AFH,∠EGF=∠FHA=90°∴△FGE∽△AHF∴=∴=∴AH=5GF在Rt△AHF中,∠AHF=90°∵AH2+FH2=AF2∴(5GF)2+(5-GF)2=52∴GF=∴△EFC的面积为××2=;(3)解:①当∠EFC=90°时,A、F、C共线,如图所示:设DE=EF=x,则CE=3-x,∵AC=,∴CF=-x,∵∠CFE=∠D=90°,∠DCA=∠DCA,∴△CEF∽△CAD,∴,即,解得:ED=x=;②当∠ECF=90°时,如图所示:∵AD==5,AB=3,∴==4,设=x,则=3-x,∵∠DCB=∠ABC=90°,∴∽,∴,即,解得:x==;由折叠可得:,设,则,,在RT△中,∵,即9²+x²=(x+3)²,解得x==12,∴;③当∠CEF=90°时,AD=AF,此时四边形AFED是正方形,∴AF=AD=DE=5,综上所述,DE的长为:、5、15、.【点睛】本题考查了翻折的性质,相似三角形的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.22、(1);(2)【分析】(1)根据垂径定理得到,根据圆周角定理解答;(2)根据圆周角定理得到∠C=90°,根据等腰三角形的性质得到∠A=∠AEC=30°,根据余弦的定义求出AE即可.【详解】(1)连接.∵,∴,∴,∵,∴.(2)∵是的直径,∴,∴,∵,∴,∴,∵,∴,∵,∴,∵,连接AC∵是的直径,∴,∴,即解得AE=∴,∴的半径为.【点睛】本题考查圆周角定理,垂径定理,圆心角,弧,弦之间的关系及锐角三角函数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23、【分析】根据根与系数的关系建立关于a的不等式,再结合即可求出a的取值范围.【详解】解:依题意得,,∵,∴,解得,又由,解得,∴的取值范围为.【点睛】本题考查一元二次方程根与系数的关系,熟记两根之和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 歧口中学网络舆情管理工作实施方案
- Methyl-cellulose-Standard-生命科学试剂-MCE
- Matrine-Standard-生命科学试剂-MCE
- 学校保洁专项服务方案
- 教师节美术特色课程设计
- 浙教版2021-2022学年度七年级数学上册模拟测试卷 (662)【含简略答案】
- 超级电容器课程设计论文
- 浙教版2021-2022学年度七年级数学上册模拟测试卷 (619)【含简略答案】
- 教学设计课程设计
- 教学画竹子课程设计
- 人音版小学音乐五年级上册教案全册
- 企业工商过户合同模板
- 雨污水管合同模板
- 《篮球:行进间单手肩上投篮》教案(四篇)
- 2024-2025学年部编版初一上学期期中历史试卷与参考答案
- 2024年山东地区光明电力服务公司第二批招聘高频难、易错点500题模拟试题附带答案详解
- 职业技能大赛-鸿蒙移动应用开发赛初赛理论知识考试及答案
- 2024山东高速集团限公司招聘367人高频难、易错点500题模拟试题附带答案详解
- DB34T 3730-2020 耕地损毁程度鉴定技术规范
- 【人教版】《劳动教育》二下 劳动项目一 洗头 课件
- 第三单元长方形和正方形(单元测试)-2024-2025学年三年级上册数学苏教版
评论
0/150
提交评论