甘肃省甘谷县一中2024届高三第三次模拟考试数学试卷含解析_第1页
甘肃省甘谷县一中2024届高三第三次模拟考试数学试卷含解析_第2页
甘肃省甘谷县一中2024届高三第三次模拟考试数学试卷含解析_第3页
甘肃省甘谷县一中2024届高三第三次模拟考试数学试卷含解析_第4页
甘肃省甘谷县一中2024届高三第三次模拟考试数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省甘谷县一中2024届高三第三次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在平行四边形中,为对角线的交点,点为平行四边形外一点,且,,则()A. B.C. D.2.已知l,m是两条不同的直线,m⊥平面α,则“”是“l⊥m”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件3.已知非零向量满足,,且与的夹角为,则()A.6 B. C. D.34.已知双曲线的中心在原点且一个焦点为,直线与其相交于,两点,若中点的横坐标为,则此双曲线的方程是A. B.C. D.5.如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为()A. B. C.6 D.与点O的位置有关6.已知为虚数单位,复数,则其共轭复数()A. B. C. D.7.已知圆与抛物线的准线相切,则的值为()A.1 B.2 C. D.48.一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是()A.B.C.D.9.函数f(x)=的图象大致为()A. B.C. D.10.椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为12厘米,底面半径为3厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃厚度忽略不计),在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是()A. B. C. D.11.()A. B. C. D.12.如图是一个几何体的三视图,则这个几何体的体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线(,)的左,右焦点分别为,,过点的直线与双曲线的左,右两支分别交于,两点,若,,则双曲线的离心率为__________.14.如图,直三棱柱中,,,,P是的中点,则三棱锥的体积为________.15.在四棱锥中,底面为正方形,面分别是棱的中点,过的平面交棱于点,则四边形面积为__________.16.的展开式中的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的中心在坐标原点,其短半轴长为,一个焦点坐标为,点在椭圆上,点在直线上的点,且.证明:直线与圆相切;求面积的最小值.18.(12分)已知函数(为实常数).(1)讨论函数在上的单调性;(2)若存在,使得成立,求实数的取值范围.19.(12分)已知函数,,若存在实数使成立,求实数的取值范围.20.(12分)已知函数f(x)=x(1)讨论fx(2)当x≥-1时,fx+a21.(12分)已知椭圆,左、右焦点为,点为上任意一点,若的最大值为3,最小值为1.(1)求椭圆的方程;(2)动直线过点与交于两点,在轴上是否存在定点,使成立,说明理由.22.(10分)已知数列的各项均为正数,且满足.(1)求,及的通项公式;(2)求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

连接,根据题目,证明出四边形为平行四边形,然后,利用向量的线性运算即可求出答案【详解】连接,由,知,四边形为平行四边形,可得四边形为平行四边形,所以.【点睛】本题考查向量的线性运算问题,属于基础题2、A【解析】

根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【详解】当m⊥平面α时,若l∥α”则“l⊥m”成立,即充分性成立,若l⊥m,则l∥α或l⊂α,即必要性不成立,则“l∥α”是“l⊥m”充分不必要条件,故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题3、D【解析】

利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可.【详解】解:非零向量,满足,可知两个向量垂直,,且与的夹角为,说明以向量,为邻边,为对角线的平行四边形是正方形,所以则.故选:.【点睛】本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题.4、D【解析】

根据点差法得,再根据焦点坐标得,解方程组得,,即得结果.【详解】设双曲线的方程为,由题意可得,设,,则的中点为,由且,得,,即,联立,解得,,故所求双曲线的方程为.故选D.【点睛】本题主要考查利用点差法求双曲线标准方程,考查基本求解能力,属于中档题.5、B【解析】

根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论.【详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O在平面上,高为2,所以四棱锥的体积为,所以该几何体的体积为.故选:B.【点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.6、B【解析】

先根据复数的乘法计算出,然后再根据共轭复数的概念直接写出即可.【详解】由,所以其共轭复数.故选:B.【点睛】本题考查复数的乘法运算以及共轭复数的概念,难度较易.7、B【解析】

因为圆与抛物线的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于半径,可知的值为2,选B.【详解】请在此输入详解!8、D【解析】

由三视图可知该几何体的直观图是轴截面在水平面上的半个圆锥,表面积为,故选D.9、D【解析】

根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.【详解】因为f(-x)=≠f(x)知f(x)的图象不关于y轴对称,排除选项B,C.又f(2)==-<0.排除A,故选D.【点睛】本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.10、C【解析】

根据题意可知当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大,由椭圆的几何性质即可确定此时椭圆的离心率,进而确定离心率的取值范围.【详解】当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大.此时椭圆长轴长为,短轴长为6,所以椭圆离心率,所以.故选:C【点睛】本题考查了橢圆的定义及其性质的简单应用,属于基础题.11、D【解析】

利用,根据诱导公式进行化简,可得,然后利用两角差的正弦定理,可得结果.【详解】由所以,所以原式所以原式故故选:D【点睛】本题考查诱导公式以及两角差的正弦公式,关键在于掌握公式,属基础题.12、A【解析】

由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.再由球与圆柱体积公式求解.【详解】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.则几何体的体积为.故选:.【点睛】本题主要考查由三视图求面积、体积,关键是由三视图还原原几何体,意在考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

设,由双曲线的定义得出:,由得为等腰三角形,设,根据,可求出,得出,再结合焦点三角形,利用余弦定理:求出和的关系,即可得出离心率.【详解】解:设,由双曲线的定义得出:,,由图可知:,又,即,则,为等腰三角形,,设,,则,,即,解得:,则,,解得:,,解得:,,在中,由余弦定理得:,即:,解得:,即.故答案为:.【点睛】本题考查双曲线的定义的应用,以及余弦定理的应用,求双曲线离心率.14、【解析】

证明平面,于是,利用三棱锥的体积公式即可求解.【详解】平面,平面,,又.平面,是的中点,.

故答案为:【点睛】本题考查了线面垂直的判定定理、三棱锥的体积公式,属于基础题.15、【解析】

设是中点,由于分别是棱的中点,所以,所以,所以四边形是平行四边形.由于平面,所以,而,,所以平面,所以.由于,所以,也即,所以四边形是矩形.而.从而.故答案为:.【点睛】本小题主要考查空间平面图形面积的计算,考查线面垂直的判定,考查空间想象能力和逻辑推理能力,属于中档题.16、80.【解析】

只需找到展开式中的项的系数即可.【详解】展开式的通项为,令,则,故的展开式中的系数为80.故答案为:80.【点睛】本题考查二项式定理的应用,涉及到展开式中的特殊项系数,考查学生的计算能力,是一道容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、证明见解析;1.【解析】

由题意可得椭圆的方程为,由点在直线上,且知的斜率必定存在,分类讨论当的斜率为时和斜率不为时的情况列出相应式子,即可得出直线与圆相切;由知,的面积为【详解】解:由题意,椭圆的焦点在轴上,且,所以.所以椭圆的方程为.由点在直线上,且知的斜率必定存在,当的斜率为时,,,于是,到的距离为,直线与圆相切.当的斜率不为时,设的方程为,与联立得,所以,,从而.而,故的方程为,而在上,故,从而,于是.此时,到的距离为,直线与圆相切.综上,直线与圆相切.由知,的面积为,上式中,当且仅当等号成立,所以面积的最小值为1.【点睛】本题主要考查直线与椭圆的位置关系、直线与圆的位置关系等基础知识,考查运算求解能力、推理论证能力和创新意识,考查化归与转化思想,属于难题.18、(1)见解析(2)【解析】

(1)分类讨论的值,利用导数证明单调性即可;(2)利用导数分别得出,,时,的最小值,即可得出实数的取值范围.【详解】(1),.当即时,,,此时,在上单调递增;当即时,时,,在上单调递减;时,,在上单调递增;当即时,,,此时,在上单调递减;(2)当时,因为在上单调递增,所以的最小值为,所以当时,在上单调递减,在上单调递增所以的最小值为.因为,所以,.所以,所以.当时,在上单调递减所以的最小值为因为,所以,所以,综上,.【点睛】本题主要考查了利用导数证明函数的单调性以及利用导数研究函数的存在性问题,属于中档题.19、【解析】试题分析:先将问题“存在实数使成立”转化为“求函数的最大值”,再借助柯西不等式求出的最大值即可获解.试题解析:存在实数使成立,等价于的最大值大于,因为,由柯西不等式:,所以,当且仅当时取“”,故常数的取值范围是.考点:柯西不等式即运用和转化与化归的数学思想的运用.20、(1)见解析;(2)-∞,1【解析】

(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).对a分类讨论,即可得出单调性.

(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,当x=-1时,0≤-1e+1恒成立.当x>-1时,a≤xe【详解】解法一:(1)f①当a≤0时,x(-∞-1(-1,+∞)f-0+f(x)↘极小值↗所以f(x)在(-∞,-1)上单调递减,在(-1,+∞)单调递增.②当a>0时,f'(x)=0的根为x=ln若lna>-1,即a>x(-∞,-1)-1(-1,ln(f+0-0+f(x)↗极大值↘极小值↗所以f(x)在(-∞,-1),(lna,+∞)上单调递增,在若lna=-1,即a=f'(x)≥0在(-∞,+∞)上恒成立,所以f(x)在若lna<-1,即0<a<x(-∞,ln(-1(-1,+∞)f+0-0+f(x)↗极大值↘极小值↗所以f(x)在(-∞,lna),(-1,+∞)上单调递增,在综上:当a≤0时,f(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增;当0<a<1e时,f(x)在(-∞,lna),自a=1e时,f(x)在当a>1e时,f(x)在(-∞,-1),(ln(2)因为xex-ax-a+1≥0当x=-1时,0≤-1当x>-1时,a≤x令g(x)=xex设h(x)=e因为h'(x)=e即hx=e又因为h0=0,所以g(x)=xex则g(x)min=g(0)=1综上,a的取值范围为-∞,1.解法二:(1)同解法一;(2)令g(x)=f(x)+a所以g'当a≤0时,g'(x)≥0,则g(x)在所以g(x)≥g(-1)=-1当0<a≤1时,令h(x)=e因为h'(x)=2ex+x又因为h-1=-a<0,所以h(x)=ex+xexx(-1x(g-0+g(x)↘极小值↗g==-e当a>1时,g(0)=-a+1<0,不满足题意.综上,a的取值范

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论