版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届天津大学附属中学高考临考冲刺数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},则=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}2.连接双曲线及的4个顶点的四边形面积为,连接4个焦点的四边形的面积为,则当取得最大值时,双曲线的离心率为()A. B. C. D.3.在平面直角坐标系中,若不等式组所表示的平面区域内存在点,使不等式成立,则实数的取值范围为()A. B. C. D.4.若表示不超过的最大整数(如,,),已知,,,则()A.2 B.5 C.7 D.85.在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?()A. B. C. D.6.当输入的实数时,执行如图所示的程序框图,则输出的不小于103的概率是()A. B. C. D.7.已知为虚数单位,若复数,则A. B.C. D.8.设a,b∈(0,1)∪(1,+∞),则"a=b"是"logA.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件9.已知,,若,则向量在向量方向的投影为()A. B. C. D.10.若函数在时取得最小值,则()A. B. C. D.11.已知正四面体外接球的体积为,则这个四面体的表面积为()A. B. C. D.12.已知命题,,则是()A., B.,.C., D.,.二、填空题:本题共4小题,每小题5分,共20分。13.设,则除以的余数是______.14.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.15.假如某人有壹元、贰元、伍元、拾元、贰拾元、伍拾元、壹佰元的纸币各两张,要支付贰佰壹拾玖(219)元的货款,则有________种不同的支付方式.16.已知函数f(x)=若关于x的方程f(x)=kx有两个不同的实根,则实数k的取值范围是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线的参数方程为(为参数,将曲线经过伸缩变换后得到曲线.在以原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方程;(2)已知点是曲线上的任意一点,又直线上有两点和,且,又点的极角为,点的极角为锐角.求:①点的极角;②面积的取值范围.18.(12分)如图,过点且平行与x轴的直线交椭圆于A、B两点,且.(1)求椭圆的标准方程;(2)过点M且斜率为正的直线交椭圆于段C、D,直线AC、BD分别交直线于点E、F,求证:是定值.19.(12分)已知函数.(1)当时,求的单调区间;(2)若函数有两个极值点,,且,为的导函数,设,求的取值范围,并求取到最小值时所对应的的值.20.(12分)若函数在处有极值,且,则称为函数的“F点”.(1)设函数().①当时,求函数的极值;②若函数存在“F点”,求k的值;(2)已知函数(a,b,,)存在两个不相等的“F点”,,且,求a的取值范围.21.(12分)设函数,,其中,为正实数.(1)若的图象总在函数的图象的下方,求实数的取值范围;(2)设,证明:对任意,都有.22.(10分)在中,角的对边分别为,且满足.(Ⅰ)求角的大小;(Ⅱ)若的面积为,,求和的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
按补集、交集定义,即可求解.【详解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故选:B.【点睛】本题考查集合间的运算,属于基础题.2、D【解析】
先求出四个顶点、四个焦点的坐标,四个顶点构成一个菱形,求出菱形的面积,四个焦点构成正方形,求出其面积,利用重要不等式求得取得最大值时有,从而求得其离心率.【详解】双曲线与互为共轭双曲线,四个顶点的坐标为,四个焦点的坐标为,四个顶点形成的四边形的面积,四个焦点连线形成的四边形的面积,所以,当取得最大值时有,,离心率,故选:D.【点睛】该题考查的是有关双曲线的离心率的问题,涉及到的知识点有共轭双曲线的顶点,焦点,菱形面积公式,重要不等式求最值,等轴双曲线的离心率,属于简单题目.3、B【解析】
依据线性约束条件画出可行域,目标函数恒过,再分别讨论的正负进一步确定目标函数与可行域的基本关系,即可求解【详解】作出不等式对应的平面区域,如图所示:其中,直线过定点,当时,不等式表示直线及其左边的区域,不满足题意;当时,直线的斜率,不等式表示直线下方的区域,不满足题意;当时,直线的斜率,不等式表示直线上方的区域,要使不等式组所表示的平面区域内存在点,使不等式成立,只需直线的斜率,解得.综上可得实数的取值范围为,故选:B.【点睛】本题考查由目标函数有解求解参数取值范围问题,分类讨论与数形结合思想,属于中档题4、B【解析】
求出,,,,,,判断出是一个以周期为6的周期数列,求出即可.【详解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一个以周期为6的周期数列,则.故选:B.【点睛】本题考查周期数列的判断和取整函数的应用.5、D【解析】
设羊户赔粮升,马户赔粮升,牛户赔粮升,易知成等比数列,,结合等比数列的性质可求出答案.【详解】设羊户赔粮升,马户赔粮升,牛户赔粮升,则成等比数列,且公比,则,故,,.故选:D.【点睛】本题考查数列与数学文化,考查了等比数列的性质,考查了学生的运算求解能力,属于基础题.6、A【解析】
根据循环结构的运行,直至不满足条件退出循环体,求出的范围,利用几何概型概率公式,即可求出结论.【详解】程序框图共运行3次,输出的的范围是,所以输出的不小于103的概率为.故选:A.【点睛】本题考查循环结构输出结果、几何概型的概率,模拟程序运行是解题的关键,属于基础题.7、B【解析】
因为,所以,故选B.8、A【解析】
根据题意得到充分性,验证a=2,b=1【详解】a,b∈0,1∪1,+∞,当"a=b当logab=log故选:A.【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.9、B【解析】
由,,,再由向量在向量方向的投影为化简运算即可【详解】∵∴,∴,∴向量在向量方向的投影为.故选:B.【点睛】本题考查向量投影的几何意义,属于基础题10、D【解析】
利用辅助角公式化简的解析式,再根据正弦函数的最值,求得在函数取得最小值时的值.【详解】解:,其中,,,故当,即时,函数取最小值,所以,故选:D【点睛】本题主要考查辅助角公式,正弦函数的最值的应用,属于基础题.11、B【解析】
设正四面体ABCD的外接球的半径R,将该正四面体放入一个正方体内,使得每条棱恰好为正方体的面对角线,根据正方体和正四面体的外接球为同一个球计算出正方体的棱长,从而得出正四面体的棱长,最后可求出正四面体的表面积.【详解】将正四面体ABCD放在一个正方体内,设正方体的棱长为a,如图所示,设正四面体ABCD的外接球的半径为R,则,得.因为正四面体ABCD的外接球和正方体的外接球是同一个球,则有,∴.而正四面体ABCD的每条棱长均为正方体的面对角线长,所以,正四面体ABCD的棱长为,因此,这个正四面体的表面积为.故选:B.【点睛】本题考查球的内接多面体,解决这类问题就是找出合适的模型将球体的半径与几何体的一些几何量联系起来,考查计算能力,属于中档题.12、B【解析】
根据全称命题的否定为特称命题,得到结果.【详解】根据全称命题的否定为特称命题,可得,本题正确选项:【点睛】本题考查含量词的命题的否定,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
利用二项式定理得到,将89写成1+88,然后再利用二项式定理展开即可.【详解】,因展开式中后面10项均有88这个因式,所以除以的余数为1.故答案为:1【点睛】本题考查二项式定理的综合应用,涉及余数的问题,解决此类问题的关键是灵活构造二项式,并将它展开分析,本题是一道基础题.14、130.15.【解析】
由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得的最大值.【详解】(1),顾客一次购买草莓和西瓜各一盒,需要支付元.(2)设顾客一次购买水果的促销前总价为元,元时,李明得到的金额为,符合要求.元时,有恒成立,即,即元.所以的最大值为.【点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.15、1【解析】
按照个位上的9元的支付情况分类,三个数位上的钱数分步计算,相加即可.【详解】9元的支付有两种情况,或者,①当9元采用方式支付时,200元的支付方式为,或者或者共3种方式,10元的支付只能用1张10元,此时共有种支付方式;②当9元采用方式支付时:200元的支付方式为,或者或者共3种方式,10元的支付只能用1张10元,此时共有种支付方式;所以总的支付方式共有种.故答案为:1.【点睛】本题考查了分类加法计数原理和分步乘法计数原理,属于中档题.做题时注意分类做到不重不漏,分步做到步骤完整.16、【解析】由图可知,当直线y=kx在直线OA与x轴(不含它们)之间时,y=kx与y=f(x)的图像有两个不同交点,即方程有两个不相同的实根.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)曲线为圆心在原点,半径为2的圆.的极坐标方程为(2)①②【解析】
(1)求得曲线伸缩变换后所得的参数方程,消参后求得的普通方程,判断出对应的曲线,并将的普通方程转化为极坐标方程.(2)①将的极角代入直线的极坐标方程,由此求得点的极径,判断出为等腰三角形,求得直线的普通方程,由此求得,进而求得,从而求得点的极角.②解法一:利用曲线的参数方程,求得曲线上的点到直线的距离的表达式,结合三角函数的知识求得的最小值和最大值,由此求得面积的取值范围.解法二:根据曲线表示的曲线,利用圆的几何性质求得圆上的点到直线的距离的最大值和最小值,进而求得面积的取值范围.【详解】(1)因为曲线的参数方程为(为参数),因为则曲线的参数方程所以的普通方程为.所以曲线为圆心在原点,半径为2的圆.所以的极坐标方程为,即.(2)①点的极角为,代入直线的极坐标方程得点极径为,且,所以为等腰三角形,又直线的普通方程为,又点的极角为锐角,所以,所以,所以点的极角为.②解法1:直线的普通方程为.曲线上的点到直线的距离.当,即()时,取到最小值为.当,即()时,取到最大值为.所以面积的最大值为;所以面积的最小值为;故面积的取值范围.解法2:直线的普通方程为.因为圆的半径为2,且圆心到直线的距离,因为,所以圆与直线相离.所以圆上的点到直线的距离最大值为,最小值为.所以面积的最大值为;所以面积的最小值为;故面积的取值范围.【点睛】本小题考查坐标变换,极径与极角;直线,圆的极坐标方程,圆的参数方程,直线的极坐标方程与普通方程,点到直线的距离等.考查数学运算能力,包括运算原理的理解与应用、运算方法的选择与优化、运算结果的检验与改进等.也兼考了数学抽象素养、逻辑推理、数学运算、直观想象等核心素养.18、(1);(2)证明见解析.【解析】
(1)由题意求得的坐标,代入椭圆方程求得,由此求得椭圆的标准方程.(2)设出直线的方程,联立直线的方程和椭圆方程,可得关于的一元二次方程,设出的坐标,分别求出直线与直线的方程,从而求得两点的纵坐标,利用根与系数关系可化简证得为定值.【详解】(1)由已知可得:,代入椭圆方程得:椭圆方程为;(2)设直线CD的方程为,代入,得:设,,则有,则AC的方程为,令,得BD的方程为,令,得,证毕.【点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,是难题.19、(1)单调递增区间为,单调递减区间为(2)的取值范围是;对应的的值为.【解析】
(1)当时,求的导数可得函数的单调区间;(2)若函数有两个极值点,,且,利用导函数,可得的范围,再表达,构造新函数可求的取值范围,从而可求取到最小值时所对应的的值.【详解】(1)函数由条件得函数的定义域:,当时,,所以:,时,,当时,,当,时,,则函数的单调增区间为:,单调递减区间为:,;(2)由条件得:,,由条件得有两根:,,满足,△,可得:或;由,可得:.,函数的对称轴为,,所以:,;,可得:,,,则:,所以:;所以:,令,,,则,因为:时,,所以:在,上是单调递减,在,上单调递增,因为:,(1),,(1),所以,;即的取值范围是:,;,所以有,则,;所以当取到最小值时所对应的的值为;【点睛】本题主要考查利用导数研究函数的极值和单调区间问题,考查利用导数求函数的最值,体现了转化的思想方法,属于难题.20、(1)①极小值为1,无极大值.②实数k的值为1.(2)【解析】
(1)①将代入可得,求导讨论函数单调性,即得极值;②设是函数的一个“F点”(),即是的零点,那么由导数可知,且,可得,根据可得,设,由的单调性可得,即得.(2)方法一:先求的导数,存在两个不相等的“F点”,,可以由和韦达定理表示出,的关系,再由,可得的关系式,根据已知解即得.方法二:由函数存在不相等的两个“F点”和,可知,是关于x的方程组的两个相异实数根,由得,分两种情况:是函数一个“F点”,不是函数一个“F点”,进行讨论即得.【详解】解:(1)①当时,(),则有(),令得,列表如下:x10极小值故函数在处取得极小值,极小值为1,无极大值.②设是函数的一个“F点”().(),是函数的零点.,由,得,,由,得,即.设,则,所以函数在上单调增,注意到,所以方程存在唯一实根1,所以,得,根据①知,时,是函数的极小值点,所以1是函数的“F点”.综上,得实数k的值为1.(2)由(a,b,,),可得().又函数存在不相等的两个“F点”和,,是关于x的方程()的两个相异实数根.又,,,即,从而,,即..,,解得.所以,实数a的取值范围为.(2)(解法2)因为(a,b,,)所以().又因为函数存在不相等的两个“F点”和,所以,是关于x的方程组的两个相异实数根.由得,.(2.1)当是函数一个“F点”时,且.所以,即.又,所以,所以.又,所以.(2.2)当不是函数一个“F点”时,则,是关于x的方程的两个相异实数根.又,所以得所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 延安大学《立体构成》2021-2022学年第一学期期末试卷
- 许昌学院《舞蹈学专业导论与创业基础》2021-2022学年第一学期期末试卷
- 四年级数学(四则混合运算)计算题专项练习与答案
- 四年级数学(上)计算题专项练习及答案
- 徐州工程学院《明清经典小说文化解读》2022-2023学年第一学期期末试卷
- 社区爱心助力计划
- 学校社团发展规划计划
- 徐州工程学院《服装结构设计(二)》2022-2023学年第一学期期末试卷
- 研究开发的创新项目进度安排计划
- 绩效管理体系建设探讨计划
- 提高护士压力性损伤评估正确率 2
- 病案管理委员会制度和职责
- 2024内置直驱动力刀塔
- 业务流程与授权管理制度
- GB/T 10069.3-2024旋转电机噪声测定方法及限值第3部分:噪声限值
- 医疗器械公司组织机构图以及部门设置和岗位职责说明
- 2024至2030年中国医联体(医疗联合体)建设全景调查及投资咨询报告
- 人教版二年级下数学全册教案设计(表格+各单元知识树)
- 基础模块2 Unit7 Invention and Innovation单元测试2025年中职高考英语一轮复习讲练测(高教版2023修订版·全国用)
- 亲近动物丰富生命体验 课件 2024-2025学年语文七年级上册
- 安徽干部教育在线2024年必修课考试答案
评论
0/150
提交评论