版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省南昌市第十五中学高考数学考前最后一卷预测卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,则关于的方程所表示的曲线是()A.长轴在轴上的椭圆 B.长轴在轴上的椭圆C.实轴在轴上的双曲线 D.实轴在轴上的双曲线2.甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是()A.甲 B.乙 C.丙 D.丁3.直线与抛物线C:交于A,B两点,直线,且l与C相切,切点为P,记的面积为S,则的最小值为A. B. C. D.4.已知复数,则对应的点在复平面内位于()A.第一象限 B.第二象限C.第三象限 D.第四象限5.设,其中a,b是实数,则()A.1 B.2 C. D.6.《普通高中数学课程标准(2017版)》提出了数学学科的六大核心素养.为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是()A.甲的数据分析素养高于乙B.甲的数学建模素养优于数学抽象素养C.乙的六大素养中逻辑推理最差D.乙的六大素养整体平均水平优于甲7.函数的图象大致是()A. B.C. D.8.已知集合,,,则()A. B. C. D.9.已知平面向量,满足,且,则与的夹角为()A. B. C. D.10.下列说法正确的是()A.命题“,”的否定形式是“,”B.若平面,,,满足,则C.随机变量服从正态分布(),若,则D.设是实数,“”是“”的充分不必要条件11.“角谷猜想”的内容是:对于任意一个大于1的整数,如果为偶数就除以2,如果是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入,则输出的()A.6 B.7 C.8 D.912.已知变量x,y间存在线性相关关系,其数据如下表,回归直线方程为,则表中数据m的值为()变量x0123变量y35.57A.0.9 B.0.85 C.0.75 D.0.5二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中,常数项为________.(用数字作答)14.已知各项均为正数的等比数列的前项积为,,(且),则__________.15.在平面直角坐标系中,曲线在点处的切线与x轴相交于点A,其中e为自然对数的底数.若点,的面积为3,则的值是______.16.函数在内有两个零点,则实数的取值范围是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(Ⅰ)求在点处的切线方程;(Ⅱ)已知在上恒成立,求的值.(Ⅲ)若方程有两个实数根,且,证明:.18.(12分)已知数列的各项都为正数,,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,其中表示不超过x的最大整数,如,,求数列的前2020项和.19.(12分)如图,在四棱锥中,侧棱底面,,,,,是棱中点.(1)已知点在棱上,且平面平面,试确定点的位置并说明理由;(2)设点是线段上的动点,当点在何处时,直线与平面所成角最大?并求最大角的正弦值.20.(12分)在直角坐标系中,曲线的参数方程为(为参数,将曲线经过伸缩变换后得到曲线.在以原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方程;(2)已知点是曲线上的任意一点,又直线上有两点和,且,又点的极角为,点的极角为锐角.求:①点的极角;②面积的取值范围.21.(12分)的内角,,的对边分别为,,已知,.(1)求;(2)若的面积,求.22.(10分)如图,在四棱锥中,平面,底面是矩形,,,分别是,的中点.(Ⅰ)求证:平面;(Ⅱ)设,求三棱锥的体积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据条件,方程.即,结合双曲线的标准方程的特征判断曲线的类型.【详解】解:∵k>1,∴1+k>0,k2-1>0,
方程,即,表示实轴在y轴上的双曲线,
故选C.【点睛】本题考查双曲线的标准方程的特征,依据条件把已知的曲线方程化为是关键.2、D【解析】
根据演绎推理进行判断.【详解】由①②④可知甲乙丁都不在远古村寨,必有丙同学去了远古村寨,由③可知必有甲去了原始森林,由④可知丁去了千丈瀑布,因此游玩千丈瀑布景点的同学是丁.故选:D.【点睛】本题考查演绎推理,掌握演绎推理的定义是解题基础.3、D【解析】
设出坐标,联立直线方程与抛物线方程,利用弦长公式求得,再由点到直线的距离公式求得到的距离,得到的面积为,作差后利用导数求最值.【详解】设,,联立,得则,则由,得设,则,则点到直线的距离从而.令当时,;当时,故,即的最小值为本题正确选项:【点睛】本题考查直线与抛物线位置关系的应用,考查利用导数求最值的问题.解决圆锥曲线中的面积类最值问题,通常采用构造函数关系的方式,然后结合导数或者利用函数值域的方法来求解最值.4、A【解析】
利用复数除法运算化简,由此求得对应点所在象限.【详解】依题意,对应点为,在第一象限.故选A.【点睛】本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题.5、D【解析】
根据复数相等,可得,然后根据复数模的计算,可得结果.【详解】由题可知:,即,所以则故选:D【点睛】本题考查复数模的计算,考验计算,属基础题.6、D【解析】
根据雷达图对选项逐一分析,由此确定叙述正确的选项.【详解】对于A选项,甲的数据分析分,乙的数据分析分,甲低于乙,故A选项错误.对于B选项,甲的建模素养分,乙的建模素养分,甲低于乙,故B选项错误.对于C选项,乙的六大素养中,逻辑推理分,不是最差,故C选项错误.对于D选项,甲的总得分分,乙的总得分分,所以乙的六大素养整体平均水平优于甲,故D选项正确.故选:D【点睛】本小题主要考查图表分析和数据处理,属于基础题.7、B【解析】
根据函数表达式,把分母设为新函数,首先计算函数定义域,然后求导,根据导函数的正负判断函数单调性,对应函数图像得到答案.【详解】设,,则的定义域为.,当,,单增,当,,单减,则.则在上单增,上单减,.选B.【点睛】本题考查了函数图像的判断,用到了换元的思想,简化了运算,同学们还可以用特殊值法等方法进行判断.8、A【解析】
求得集合中函数的值域,由此求得,进而求得.【详解】由,得,所以,所以.故选:A【点睛】本小题主要考查函数值域的求法,考查集合补集、交集的概念和运算,属于基础题.9、C【解析】
根据,两边平方,化简得,再利用数量积定义得到求解.【详解】因为平面向量,满足,且,所以,所以,所以,所以,所以与的夹角为.故选:C【点睛】本题主要考查平面向量的模,向量的夹角和数量积运算,属于基础题.10、D【解析】
由特称命题的否定是全称命题可判断选项A;可能相交,可判断B选项;利用正态分布的性质可判断选项C;或,利用集合间的包含关系可判断选项D.【详解】命题“,”的否定形式是“,”,故A错误;,,则可能相交,故B错误;若,则,所以,故,所以C错误;由,得或,故“”是“”的充分不必要条件,D正确.故选:D.【点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是一道容易题.11、B【解析】
模拟程序运行,观察变量值可得结论.【详解】循环前,循环时:,不满足条件;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,满足条件,退出循环,输出.故选:B.【点睛】本题考查程序框图,考查循环结构,解题时可模拟程序运行,观察变量值,从而得出结论.12、A【解析】
计算,代入回归方程可得.【详解】由题意,,∴,解得.故选:A.【点睛】本题考查线性回归直线方程,解题关键是掌握性质:线性回归直线一定过中心点.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
的展开式的通项为,取计算得到答案.【详解】的展开式的通项为:,取得到常数项.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力.14、【解析】
利用等比数列的性质求得,进而求得,再利用对数运算求得的值.【详解】由于,,所以,则,∴,,.故答案为:【点睛】本小题主要考查等比数列的性质,考查对数运算,属于基础题.15、【解析】
对求导,再根据点的坐标可得切线方程,令,可得点横坐标,由的面积为3,求解即得.【详解】由题,,切线斜率,则切线方程为,令,解得,又的面积为3,,解得.故答案为:【点睛】本题考查利用导数研究函数的切线,难度不大.16、【解析】
设,,设,函数为奇函数,,函数单调递增,,画出简图,如图所示,根据,解得答案.【详解】,设,,则.原函数等价于函数,即有两个解.设,则,函数为奇函数.,函数单调递增,,,.当时,易知不成立;当时,根据对称性,考虑时的情况,,画出简图,如图所示,根据图像知:故,即,根据对称性知:.故答案为:.【点睛】本题考查了函数零点问题,意在考查学生的转化能力和计算能力,画出图像是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ);(Ⅲ)证明见解析【解析】
(Ⅰ)根据导数的几何意义求解即可.(Ⅱ)求导分析函数的单调性,并构造函数根据单调性分析可得只能在处取得最小值求解即可.(Ⅲ)根据(Ⅰ)(Ⅱ)的结论可知,在上恒成立,再分别设的解为、.再根据不等式的性质证明即可.【详解】(Ⅰ)由题,故.且.故在点处的切线方程为.(Ⅱ)设恒成立,故.设函数则,故在上单调递减且,又在上单调递增.又,即且,故只能在处取得最小值,当时,此时,且在上,单调递减.在上,单调递增.故,满足题意;当时,此时有解,且在上单调递减,与矛盾;当时,此时有解,且在上单调递减,与矛盾;故(Ⅲ).由(Ⅰ),在上单调递减且,又在上单调递增,故最多一根.又因为,,故设的解为,因为,故.所以在递减,在递增.因为方程有两个实数根,故.结合(Ⅰ)(Ⅱ)有,在上恒成立.设的解为,则;设的解为,则.故,.故,得证.【点睛】本题主要考查了导数的几何意义以及根据函数的单调性与最值求解参数值的问题.同时也考查了构造函数结合前问的结论证明不等式的方法.属于难题.18、(Ⅰ);(Ⅱ)4953【解析】
(Ⅰ)递推公式变形为,由数列是正项数列,得到,根据数列是等比数列求通项公式;(Ⅱ),根据新定义和对数的运算分类讨论数列的通项公式,并求前2020项和.【详解】(Ⅰ)∵,∴,∴又∵数列的各项都为正数,∴,即.∴数列是以2为首项,2为公比的等比数列,∴.(Ⅱ)∵,∴,.∴数列的前2020项的和为.【点睛】本题考查根据数列的递推公式求通项公式和数列的前项和,意在考查转化与化归的思想,计算能力,属于中档题型.19、(1)为中点,理由见解析;(2)当点在线段靠近的三等分点时,直线与平面所成角最大,最大角的正弦值.【解析】
(1)为中点,可利用中位线与平行四边形性质证明,,从而证明平面平面;(2)以A为原点,分别以,,所在直线为、、轴建立空间直角坐标系,利用向量法求出当点在线段靠近的三等分点时,直线与平面所成角最大,并可求出最大角的正弦值.【详解】(1)为中点,证明如下:分别为中点,又平面平面平面又,且四边形为平行四边形,同理,平面,又平面平面(2)以A为原点,分别以,,所在直线为、、轴建立空间直角坐标系则,设直线与平面所成角为,则取平面的法向量为则令,则所以当时,等号成立即当点在线段靠近的三等分点时,直线与平面所成角最大,最大角的正弦值.【点睛】本题主要考查了平面与平面的平行,直线与平面所成角的求解,考查了学生的直观想象与运算求解能力.20、(1)曲线为圆心在原点,半径为2的圆.的极坐标方程为(2)①②【解析】
(1)求得曲线伸缩变换后所得的参数方程,消参后求得的普通方程,判断出对应的曲线,并将的普通方程转化为极坐标方程.(2)①将的极角代入直线的极坐标方程,由此求得点的极径,判断出为等腰三角形,求得直线的普通方程,由此求得,进而求得,从而求得点的极角.②解法一:利用曲线的参数方程,求得曲线上的点到直线的距离的表达式,结合三角函数的知识求得的最小值和最大值,由此求得面积的取值范围.解法二:根据曲线表示的曲线,利用圆的几何性质求得圆上的点到直线的距离的最大值和最小值,进而求得面积的取值范围.【详解】(1)因为曲线的参数方程为(为参数),因为则曲线的参数方程所以的普通方程为.所以曲线为圆心在原点,半径为2的圆.所以的极坐标方程为,即.(2)①点的极角为,代入直线的极坐标方程得点极径为,且,所以为等腰三角形,又直线的普通方程为,又点的极角为锐角,所以,所以,所以点的极角为.②解法1:直线的普通方程为.曲线上的点到直线的距离.当,即()时,取到最小值为.当,即()时,取到最大值为.所以面积的最大值为;所以面积的最小值为;故面积的取值范围.解法2:直线的普通方程为.因为圆的半径为2,且圆心到直线的距离,因为,所以圆与直线相离.所以圆上的点到直线的距离最大值为,最小值为.所以面积的最大值为;所以面积的最小值为;故面积的取值范围.【点睛】本小题考查坐标变换,极径与极角;直线,圆的极坐标方程,圆的参数方程,直线的极坐标方程与普通方程,点到直线的距离等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 职业发展与晋升机会创造策略
- 快速办理二手房买卖合同范文
- 企业内部团建活动组织规定
- 农业科技研发定向捐赠协议
- 员工激励与离职率降低
- 劳务准则上墙
- 农业企业客户资产管理计划
- 交通运输设备租赁资金管理
- 大型活动舞台背景墙绘协议
- 创意产业园区
- 潜油泵及潜油泵加油机讲义
- 医患沟通内容要求记录模板(入院、入院三日、术前、术后、出院)
- 航海学天文定位第四篇第6章天文定位
- 第8章 腹部检查(讲稿)
- 浅谈深度教学中小学数学U型学习模式
- 物理电学暗箱专题30道
- 湿法脱硫工艺计算书
- 江西上饶铅山汽车驾驶科目三考试线路
- 南京农业大学学生在校学习期间现实表现证明
- (医学PPT课件)NT检查规范
- 导电炭黑的用途及使用方法
评论
0/150
提交评论